硅藻与生物合成研究组


  学科带头人胡晗华 研究员 

  学科组成员:潘玉芳高级实验师、金虎项目高级工程师、博士后2人、博士研究生2人、硕士研究生4人。 

  学科组介绍:硅藻是地球上最重要的初级生产者之一,贡献了全球近20%的碳固定。本研究组成立于2011年,主要以硅藻为对象,理论方面主要研究其脂质代谢、氮代谢和光合碳固定的机制,应用上利用合成生物学等手段,创制具有高效光合性能和抗逆能力的硅藻底盘细胞,同时结合微藻发酵技术,发展硅藻生物制造的相关技术。 

  代表性论文(*示通讯作者): 

硅藻

[1].Ge F,Huang W,Chen Z,Zhang C,Xiong Q,Bowler C,Yang J,Xu J,Hu H*. 2014. Methylcrotonyl-CoA carboxylase regulates triacylglycerol accumulation in the model diatom Phaeodactylum tricornutum. The Plant Cell. 26(4):1681–1697.

[2].Pan Y,Zhang W,Wang X,Jouhet J,Maréchal E,Liu J,Xia X,Hu H*. 2024. Allele-dependent expression and functionality of lipid enzyme phospholipid:diacylglycerol acyltransferase affect diatom carbon storage and growth. Plant Physiology. 194(2):1024–1040.

[3].Huang T,Pan Y,Maréchal E,Hu H*. 2024. Proteomes reveal the lipid metabolic network in the complex plastid of Phaeodactylum tricornutum. The Plant Journal. 117(2):385–403.

[4].Pan Y,Yang J,Gong Y,Li X,Hu H*. 2017. 3-hydroxyisobutyryl-CoA hydrolase involved in isoleucine catabolism regulates triacylglycerol accumulation in Phaeodactylum tricornutum. Philosophical Transactions of the Royal Society B‐Biological Sciences. 372(1728):20160409.

[5].Rastogi A,Vieira FRJ,Deton-Cabanillas A-F,Veluchamy A,Cantrel C,Wang G,Vanormelingen P,Bowler C,Piganeau G,Hu H*,Tirichine L*. 2020. A genomics approach reveals the genetic polymorphism,structure and functional diversity of ten accessions of the diatom Phaeodactylum tricornutum. The ISME Journal. 14: 347–363.

[6].Schoefs B*,Hu H*,Kroth PG*. 2017. The peculiar carbon metabolism in diatoms. Philosophical Transactions of the Royal Society B‐Biological Sciences. 372(1728):20160405.

[7].Allen AE,Dupont CL,Oborník M,Horák A,Nunes-Nesi A,McCrow JP,Zheng H,Johnson DA,Hu H,Fernie AR,Bowler C. 2011. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature. 473(7346):203–207.

[8].You L,Połońska A,Jasieniecka-Gazarkiewicz K,Richard F,Jouhet J,Maréchal E,Banaś A,Hu H,Pan Y,Hao X,Jin H,Allen AE,Amato A,Gong Y. 2024. Two plastidial lysophosphatidic acid acyltransferases differentially mediate the biosynthesis of membrane lipids and triacylglycerols in Phaeodactylum tricornutum. New Phytologist. 241(4):1543–1558.

[9].Seydoux C,Storti M,Giovagnetti V,Matuszyńska A,Guglielmino E,Zhao X,Giustini C,Pan Y,Blommaert L,Angulo J,Ruban AV,Hu H,Bailleul B,Courtois F,Allorent G,Finazzi G. 2022. Impaired photoprotection in Phaeodactylum tricornutum KEA3 mutants reveals the proton regulatory circuit of diatoms light acclimation. New Phytologist. 234(2):578−591.

[10]. Hao X,Chen W,Amato A,Jouhet J,Maréchal E,Moog D,Hu H,Jin H,You L,Huang F,Moosburner M,Allen AE,Gong Y. 2022. Multiplex CRISPR/Cas9 editing of the long-chain acyl-CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids. New Phytologist. 233(4):1797–1812.

微拟球藻

[11]. Yang J,Liu J,Pan Y,Maréchal E,Amato A,Liu M,Gong Y,Li Y,Hu H*. PDAT regulates PE as transient carbon sink alternative to triacylglycerol in Nannochloropsis. 2022. Plant Physiology. 189(3):1345−1362.

[12]. Hu H*,Gao K. 2006. Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnology Letters. 28(13):987−992.

[13]. Hu H,Gao K. 2003. Optimization of growth and fatty acid composition of a unicellular marine picoplankton,Nannochloropsis sp.,with enriched carbon sources. Biotechnology Letters. 25(5):421−425.

[14]. Xin Y,Lu Y,Lee Y-Y,Wei L,Jia J,Wang Q,Wang D,Bai F,Hu H,Hu Q,Liu J,Li Y,Xu J. 2017. Producing designer oils in industrial microalgae by rational modulation of co-evolving type-2 diacylglycerol acyltransferases. Molecular Plant. 10(12):1523−1539.

方法学

[15]. Yin W,Hu H*. 2023. CRISPR/Cas9-mediated genome editing via homologous recombination in a centric diatom Chaetoceros muelleri. ACS Synthetic Biology. 12(4):1287−1296.

[16]. Yin W,Hu H*. 2021. High-efficiency transformation of a centric diatom Chaetoceros muelleri by electroporation with a variety of selectable markers. Algal Research. 55: 102274.

[17]. Chen Y,Hu H*. 2019. High efficiency transformation by electroporation of the freshwater alga Nannochloropsis limnetica. World Journal of Microbiology & Biotechnology. 35(8):119.

[18]. Wei L,Xin Y,Wang Q,Yang J,Hu H*,Xu J*. 2017. RNAi-based targeted gene-knockdown in the model oleaginous microalgae Nannochloropsis oceanica. The Plant Journal. 89(6):1236−1250.

[19]. Zhang C,Hu H*. 2014. High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation. Marine Genomics. 16: 63−66.

[20]. Li F,Gao D*,Hu H*. 2014. High-efficiency nuclear transformation of the oleaginous marine Nannochloropsis species using PCR product. Bioscience Biotechnology and Biochemistry. 78(5):812−817.

附件下载: