姓 名: | 侯宏伟 |
---|---|
性 别: | 男 |
职 称: | 研究员 |
电 话: | 86-27-68788691 |
电子邮件: | houhw@ihb.ac.cn |
简历介绍:
侯宏伟,1968年2月生,男,汉族,理学博士,博士研究生导师;1989年6月本科毕业于河南师范大学生物系,获学士学位,2004年研究生毕业于北京大学生命科学学院,获博士学位,2004年起,先后在莱斯桥大学生物学系(Department of Biology, University of Lethbridge)、多伦多大学细胞及系统生物学系(Department of Cell & System Biology, University of Toronto)、加拿大农业部(Agriculture and Agri-Food Canada , AAFC)伦敦研发中心(London Research and Development Centre)和莱斯桥研发中心(Lethbridge Research and Development Centre)等学术单位从事博士后和访学研究,国外期间,从事拟南芥(Arabidopsis thaliana)、白杨(Populus balsamifera)、百脉根(Lotus japonicus)等模式植物的基因功能和维管组织发育及固氮根瘤形态建成等研究。现主持水生植物生理学实验室,从事水生植物生理生态及应用研究,先后主持科技部“重点研发计划”项目、“国家自然科学基金”项目和“湖北省科技创新重大专项”项目等。
研究方向:
高等水生植物生理生态
主要研究内容:
1. 环境因子对植物表型的调控和机制研究:“异形叶”指基因型相同的植物由于环境差异,叶形出现显著差异的现象,这种现象为研究环境对表型的调控作用提供了一个最佳模型。通过筛选,我们发现原产于热带和亚热带地区的一种水族观赏植物 – 爵床科(Acanthaceae)的异叶水蓑衣(Hygrophila difformis)(图1A和D)的叶形在陆生和水生条件下差异显著(图1B和E),是典型的异形叶,该植物易于扩繁(1C和F)、组织培养和遗传转化,我们以此植物为主要研究材料,研究环境、基因和植物激素等对异形叶形态的调控关系,初步建立了环境因子调控异形叶形态的基因调控网络和主要途径。
2. 浮萍研究及应用:浮萍(Duckweed)(图2)属天南星科(Araceae)浮萍亚科(Lemnoideae)的水生高等植物,广布于各种淡水生境,包括紫萍属(Spirodela)、斑萍属(Landoltia)、青萍属(Lemna)、扁无根萍属 (Wolffiella)、芜萍属(Wolffia),37个种。浮萍具有个体小(图2C)、结构简单、繁殖快等特点,适宜于工厂化生产,使其在研究植物形态建成、发育和进化,以及生物技术应用等方面有极大潜力。我们从种质保藏、无菌培养(图2D、E、F、G和H)和遗传转化方法建立入手,结合形态解剖、比较基因组学等研究方法研究浮萍器官退化的可能机制,我们发现浮萍不仅能自养,还有异养(图2A)和混合培养(图2B)的营养类型,研究低硫、低磷胁迫的信号途径;此外,还筛选了适于监测和富集重金属的浮萍品系,并对Nramps(金属离子转运蛋白)、PCS(植物络合素)、GSH(谷胱甘肽)等重金属转运相关蛋白编码基因进行了克隆和功能研究。
3. 水生植物生态学研究:水生植物是湖泊、湿地等淡水生态系统重要的初级生产者,是水生生物群落多样性的基础,也是维持生态系统运转的关键类群,其多样性、环境适应和种群动态同样具有重要意义。我们以高原和长江流域的重要湖泊(图3A)为对象,采用综合营养状态指数法对湖泊的营养水平现状进行评估;由于水环境中N、P等营养化水平会影响不同繁殖类型水生植物的繁殖方式,从而改变物种遗传格局,我们选择代表性的水生植物(图3C、D和E),如:菱(Trapa bispinosa)(有性生殖)、苦草(Vallisneria natans)(有性生殖和无性生殖混合)、金鱼藻(Ceratophyllum demersum)(无性生殖)等,用AFLP分子标记、甲基敏感多态性分析(MSAP)和微卫星标记(Microsatellite)等方法揭示不同的时空因素对物种、种群和个体水平的多样性和遗传格局的影响,揭示水生植物的分布、遗传多样性演变的规律及其在淡水生态系统中的功能。
4. 水生蔬菜和循环农业研究及应用:通过多种栽培方式和组织培养等方法,研究水芹(Oenanthe javanica)、豆瓣菜(Nasturtium officinale)等水生蔬菜在水、温度等逆境胁迫下的生理变化和基因表达,鉴定重要性状基因,筛选优良种质。我们还与武汉市农科院蔬菜所、安徽省凤台县、武汉市江夏区等合作,建立循环农业实习基地(图4),研究水生蔬菜在浮床等生产方式下对畜禽粪污的消纳和应用。
招生专业:遗传学、水生生物学
社会任职:
任“植物生理学报”编委。
获奖及荣誉:
代表论著:
1.杨晶晶, 赵旭耀, 李高洁, 胡诗琦, 陈艳, 孙作亮,侯宏伟.浮萍的研究及应用进展,科学通报,2021.66(9):1026-1045.
2.李高洁,胡诗琦,杨晶晶,侯宏伟. 植物异形叶研究进展,植物生理学报,2020. 56 (10):2067–2078.
3.吴志刚, 熊文, 侯宏伟*. 长江流域水生植物多样性格局与保护. 水生生物学报 2018.43: 1000-3207.
4.Sun, ZL; Zhao, XY; Li, GJ; Yang, JJ; Chen, Y; Xia, ML; Hwang, I; Hou, HW*,Metabolic flexibility during a trophic transition reveals the phenotypic plasticity of greater duckweed (Spirodela polyrhiza 7498), New Phytol, 2023, DOI: 10.1111/nph.18844 (IF5y=10.768)
5.Li, GJ; Yang, JJ; Chen, YM; Zhao, XY; Chen Y; Kimura S; Hu SQ; Hou, HW*, SHOOT MERISTEMLESS participates in the heterophylly of Hygrophila difformis (Acanthaceae). Plant Physiol, 2022, 190: 1777-1791 (IF5y=9.115)
6.Zhao, XY; Yang, JJ; Li, XZ; Li GJ; Sun, ZL; Chen Y; Chen YM; Xia ML; Li YX; Yao LG; Hou, HW*, Identification and expression analysis of GARP superfamily genes in response to nitrogen and phosphorus stress in Spirodela polyrhiza. BMC Plant Biol, 2022, 22: 308(IF5y=5.761)
7.Sun, ZL; Guo WJ; Zhao, XY; Chen Y; Yang, JJ; Xu SQ; Hou, HW*, Sulfur limitation boosts more starch accumulation than nitrogen or phosphorus limitation in duckweed (Spirodela polyrhiza). Ind Crop Prod, 2022, 185:115098(IF5y=6.508)
8.Yang, JJ; Li, GJ; Xia, ML; Chen, YM; Chen, Y; Kumar, S; Sun, ZL; Li, XZ; Zhao, XY*; Hou, HW*, Combined effects of temperature and nutrients on the toxicity of cadmium in duckweed (Lemna aequinoctialis). J Hazard Mater, 2022, 43: 128646 (IF5y=14.2)
9.Yang, JJ; Zhao, XY; Chen, Y; Li, GJ; Li, XZ; Xia, ML; Sun, ZL; Chen, YM; Li, YX; Yao, LG; Hou, HW*, Identification, structural, and expression analyses of SPX genes in giant duckweed (Spirodela polyrhiza) reveals its role in response to low phosphorus and nitrogen Stresses. Cells, 2022, 11: 1167 (IF5y=6.60)
10.Chen, Y; Li, GJ; Yang, JJ; Zhao, XY; Sun, ZL; Hou, HW*, Role of nramp transporter genes of Spirodela polyrhiza in cadmium accumulation. Ecotox Environ Safe, 2021, 227: 112907(IF5y=6.393)
11.Chen, Y; Zhao, XY; Li, GJ; Kumar, S; Sun, ZL; Li, YX; Guo, WJ; Yang, JJ*; Hou, HW*, Genome-wide identification of the Nramp gene family in Spirodela polyrhiza and expression analysis under cadmium stress. Int J Mol Sci, 2021, 22: 6414(IF5y=6.132)
12.Yang, JJ; Zhao, XY; Li, GJ; Hu, SQ; Hou, HW*, Frond architecture of the rootless duckweed Wolffia globosa. BMC Plant Biol, 2021, 21: 387(IF5y=4.96)
13.Kumar, S; Li, GJ; Yang, JJ; Huang, XF; Ji, Q; Liu, ZW; Ke, WD*; Hou, HW*, Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Front Plant Sci, 2021, 12: 660409(IF5y=6.612)
14.Zhao, XY; Li, GJ; Sun, ZL; Chen, Y; Guo, WJ; Li, YX; Chen, YM; Yang, JJ*; Hou, HW*, Identification, structure analysis, and transcript profiling of phosphate transporters under Pi deficiency in duckweeds. Int J Biol Macromol, 2021, 188 : 595-608(IF5y=6.737)
15.Zhao, XY; Yang, JJ; Li, GJ; Sun, ZL; Hu SQ; Chen Y; Guo WJ; Hou HW*, Genome-wide identification and comparative analysis of the WRKY gene family in aquatic plants and their response to abiotic stresses in giant duckweed (Spirodela polyrhiza). Genomics, 2021, 113: 1761-1777(IF5y=4.939)
16.Li, GJ; Hu SQ; Zhao, XY; Kumar S; Li YX; Yang JJ*; Hou HW*, Mechanisms of the morphological plasticity induced by phytohormones and the environment in plants. Int J Mol Sci, 2021, 22: 765(IF5y=6.132)
17.Kumar, S; Li, GJ; Yang JJ; Huang, XF; Ji Q; Zhou, K; Khan, S; Ke, WD*; Hou HW*, Investigation of an antioxidative system for salinity tolerance in Oenanthe javanica.Antioxidants, 2020, 9, 940 (IF5y=6.313)
18.Sun, ZL; Guo, WJ; Yang, JJ; Zhao, XY; Chen, Y; Yao, LG; Hou HW*. Enhanced biomass production and pollutant removal by duckweed in mixotrophic conditions. Bioresour Technol. 2020, 317:124029 (IF5y=9.237)
19.Heenatigala, PPM; Sun, ZL; Yang, JJ; Zhao, XY; Hou, HW*, Expression of LamB vaccine antigen in Wolffia globosa (Duckweed) against fish vibriosis. Front Immunol, 2020, 11: 1857 (IF5y=7.561)
20.Li, GJ #; Hu, SQ #; Yang, JJ; Zhao, XY; Schultz, E; Kimura, S; Hou, HW*, Establishment of an Agrobacterium mediated transformation protocol for the detection of cytokinin in the heterophyllous plant Hygrophila difformis (Acanthaceae), Plant Cell Rep, 2020, 39:737-750 (IF5y=4.463)
21.Wu, ZG; Xu, X; Zhang, J; Wiegleb, G; Hou, HW*, Influence of environmental factors on the genetic variation of the aquatic macrophyte Ranunculus subrigidus on the Qinghai-Tibetan Plateau. BMC Evol Biol, 2019, 19: 228 (IF5y=3.260)
22.Yang, JJ; Li, GJ; Hu, SQ; Bishopp, A; Heenatigala, PPM; Kumar, S; Duan, PF; Yao, LG; Hou HW*, A protocol for efficient callus induction and stable transformation of Spirodela polyrhiza (L.) Schleiden using Agrobacterium tumefaciens. Aquat Bot, 2018, 151: 80-86 (IF5y=2.417)
23.Heenatigala, PPM; Yang, JJ; Bishopp, A; Sun, ZL; Li, GJ; Kumar, S; Hu, SQ; Wu, ZG; Lin W; Yao, LG; Duan, PF; Hou, HW*, Development of efficient protocols for stable and transient gene transformation for Wolffia globosa using Agrobacterium. Front Chem, 2018, 6: 227 (IF5y=5.385)
24.Mariyamma, NP; Hou, HW; Carland, FM; Nelson, T; Schultz, EA*, Localization of Arabidopsis FORKED1 to a RABA positive compartment suggests a role in secretion. J Exp Bot, 2017, 68:3375-3390 (IF5y=7.860)
25.Li, GJ; Hu, SQ; Hou, HW; Kimura, S*, Heterophylly: phenotypic plasticity of leaf shape in aquatic and amphibious. Plants, 2019, 8 420 (IF5y=3.396)
26.Mariyamma, N; Clarke, K; Yu, H; Hou, HW; Wilton, E; Dyk, J; Schultz, E*, Members of the Arabidopsis FORKED1-LIKE gene family act to localize PIN1 in developing veins. J Exp Bot, 2018, 69: 4773-4790 (IF5y=7.860)
27.Khan, S; Nabi, G; Yao, L*; Siddique, R; Sajjad, W; Kumar, S; Duan, P; Hou, HW*, Health risks associated with genetic alterations in internal clock system by external factors. Int J Biol Sci, 2018, 14: 791-798 (IF5y=6.479)
28.Khan, S; Duan, P; Yao, L*; Hou, HW*, Shiftwork-mediated disruptions of circadian rhythms and sleep homeostasis cause serious health problems. Int J Genomics. 2018, 2018: 8576890 (IF5y=2.557)
29.Li, GJ; Hu, SQ; Yang, JJ; Schultz E; Clarke K; Hou HW*, Water-Wisteria as an ideal plant for heterophylly study in higher aquatic plants. Plant Cell Reports, 2017. 36: 1225-1236 (IF5y=4.463)
30.Hu, SQ; Li, GJ; Yang, JJ; Hou, HW*, Aquatic plant genomics: advances, applications, and prospects. Int J Genomics, 2017, 2017: 6347874 (IF5y=2.557)
31.Wu, Z; Wu, J; Wang, Y; Hou HW*, Development of EST-derived microsatellite markers in the aquatic macrophyte Ranunculus bungei (Ranunculaceae). Applications in Plant Sciences, 2017, 5: 1700022 (IF5y=1.929)
31.Mariyamma, N; Hou, HW; Carland, F; Nelson, T; Schultz, E*, Localization of Arabidopsis FORKED1 to a RABA positive compartment suggests a role in secretion. J Exp Bot, 2017, 68: 3375-3390 (IF5y=7.860)
32. Khan, S; Ullah, M; Siddique, R; Nabi, G; Manan, S; Yousaf, M; Hou, HW*, Role of recombinant DNA technology to improve life. Int J Genomics, 2016, 2016: 2405954 (IF5y=2.557)
33.Yoon, H#; Hossain, M#; Held, M; Hou, HW; Kehl, M;Tromas, A; Sato, S;Tabata, T; Andersen, S; Stougaard, J; Ross, L; Szczyglowski, K*, Lotus japonicus SUNERGOS1 encodes apredicted subunit A of a DNA topoisomerase VI and is required for nodule differentiationand accommodation of rhizobial infection. Plant J, 2014, 78: 811-821 (IF5y=7.666)
34.Hou, HW; Zhang, Z*; Zhao, W; Hou, J, Generating DNA sequences encoding tandem peptide repeats suitable for expression and immunological application. World J Microbiol Biotechnol, 2012, 28: 2175-80 (IF5y=3.580)
35.Garrett, J#; Meents, M; Blackshaw, M; Blackshaw, L; Hou, HW; Styranko, D; Kohalmi, S; Schultz, E*, A novel, semi-dominant allele of MONOPTEROS provides insight into leaf initiation and vein pattern formation. Planta, 2012, 236: 297-312 (IF5y=4.316)
36.Hou, HW; Erickson, J; Meservy, J; Schultz, E*, FORKED1 encodes a PH domain proteinthat is required for PIN1 canalization in developing leaf veins. Plant J, 2010, 63: 960–973 (IF5y=7.666)
37.Held, M#; Hou, H#; Miri, M#; Huynh, C; Ross, L; Hossain, S; Sato, S; Tabata, S; Perry, J; Wang, T; Szczyglowski, K*, Lotus japonicuscytokinin receptors work partially redundantly to mediate nodule formation. Plant Cell, 2014, 26: 678-694 (IF5y=12.061)
38.Hou, HW; Zhou, Y; He, X; Mwange, K; Li, W; Cui, K*, The ABP1 expression regulated by IAA and ABA is associated with the cambial activity periodicity in Eucommia ulmoides. J Exp Bot, 2006, 57: 3857-3867 (IF5y=7.860)
39.Mwange, K#; Hou, HW#;Wang, Y; He, X; Cui, K*, Opposite patterns in the annual distribution and time course of endogenous abscisic acid and indole-3-acetic acid in relation to the periodicity of cambial activity in Eucommia ulmoides Oliv. J Exp Bot, 2005, 56: 1017-1028 (IF5y=7.860)
40.Mwange, K; Hou, HW; Cui, K*, Relationship between endogenous indole-3-acetic acid and abscisic acid changes and bark recovery in Eucommia ulmoides after girdling. J Exp Bot, 2003, 54: 1899-1907 (IF5y=7.860)