论文
论文标题: Differential Regulation of the Two Ferrochelatase Paralogues in Shewanella loihica PV-4 in Response to Environmental Stresses
作者: Qiu, Dongru; Xie, Ming; Dai, Jingcheng; An, Weixing; Wei, Hehong; Tian, Chunyuan; Kempher, Megan L.; Zhou, Aifen; He, Zhili; Gu, Baohua; Zhou, Jizhong
出版刊物: APPLIED AND ENVIRONMENTAL MICROBIOLOGY
出版日期: SEP
出版年份: 2016
卷/期: 17
DOI: 10.1128/AEM.00203-16
论文摘要: Determining the function and regulation of paralogues is important in understanding microbial functional genomics and environmental adaptation. Heme homeostasis is crucial for the survival of environmental microorganisms. Most Shewanella species encode two paralogues of ferrochelatase, the terminal enzyme in the heme biosynthesis pathway. The function and transcriptional regulation of two ferrochelatase genes, hemH1 and hemH2, were investigated in Shewanella loihica PV-4. The disruption of hemH1 but not hemH2 resulted in a significant accumulation of extracellular protoporphyrin IX (PPIX), the precursor to heme, and decreased intracellular heme levels. hemH1 was constitutively expressed, and the expression of hemH2 increased when hemH1 was disrupted. The transcription of hemH1 was regulated by the housekeeping sigma factor RpoD and potentially regulated by OxyR, while hemH2 appeared to be regulated by the oxidative stress-associated sigma factor RpoE2. When an oxidative stress condition was mimicked by adding H2O2 to the medium or exposing the culture to light, PPIX accumulation was suppressed in the Delta hemH1 mutant. Consistently, transcriptome analysis indicated enhanced iron uptake and suppressed heme synthesis in the Delta hemH1 mutant. These data indicate that the two paralogues are functional in the heme synthesis pathway but regulated by environmental conditions, providing insights into the understanding of bacterial response to environmental stresses and a great potential to commercially produce porphyrin compounds. IMPORTANCE Shewanella is capable of utilizing a variety of electron acceptors for anaerobic respiration because of the existence of multiple c-type cytochromes in which heme is an essential component. The cytochrome-mediated electron transfer across cellular membranes could potentially be used for biotechnological purposes, such as electricity generation in microbial fuel cells and dye decolorization. However, the mechanism underlying the regulation of biosynthesis of heme and cytochromes is poorly understood. Our study has demonstrated that two ferrochelatase genes involved in heme biosynthesis are differentially regulated in response to environmental stresses, including light and reactive oxygen species. This is an excellent example showing how bacteria have evolved to maintain cellular heme homeostasis. More interestingly, the high yields of extracellular protoporphyrin IX by the Shewanella loihica PV-4 mutants could be utilized for commercial production of this valuable chemical via bacterial fermentation.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅