论文
论文标题: Enhancement of sediment phosphorus release during a tunnel construction across an urban lake (Lake Donghu, China)
作者: Wang, Siyang; Li, Hui; Xiao, Jian; Zhou, Yiyong; Song, Chunlei; Bi, Yonghong; Cao, Xiuyun
出版刊物: ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
出版日期: SEP
出版年份: 2016
卷/期: 17
DOI: 10.1007/s11356-016-6949-x
论文摘要: Tunnel construction in watershed area of urban lakes would accelerate eutrophication by inputting nutrients into them, while mechanisms underlying the internal phosphorus cycling as affected by construction events are scarcely studied. Focusing on two main pathways of phosphorus releasing from sediment (enzymatic mineralization and anaerobic desorption), spatial and temporal variations in phosphorus fractionation, and activities of extracellular enzymes (alkaline phosphatase, beta-1,4-glucosidase, leucine aminopeptidase, dehydrogenase, lipase) in sediment were examined, together with relevant parameters in interstitial and surface waters in a Chinese urban lake (Lake Donghu) where a subaqueous tunnel was constructed across it from October 2013 to July 2014. Higher alkaline phosphatase activity (APA) indicated phosphorus deficiency for phytoplankton, as illustrated by a significantly negative relationship between APA and concentration of dissolved total phosphorus (DTP). Noticeably, in the construction area, APAs in both sediment and surface water were significantly lower than those in other relevant basins, suggesting a phosphorus supply from some sources in this area. In parallel, its sediment gave the significantly lower iron-bound phosphorus (Fe(OOH)similar to P) content, coupled with significantly higher ratio of iron (II) to total iron content (Fe2+/TFe) and dehydrogenase activities (DHA). Contrastingly, difference in the activities of sediment hydrolases was not significant between the construction area and other basins studied. Thus, in the construction area, subsidy of bioavailable phosphorus from sediment to surface water was attributable to the anaerobic desorption of Fe(OOH)similar to P rather than enzymatic mineralization. Finally, there exisosphate, and thereby facilitating phytoplankton growth in water column.ted a significantly positive relationship between chlorophyll a concentration in surface water and Fe(OOH)similar to P content in sediment. In short, construction activities within lakes may interrupt cycling patterns of phosphorus across sediment-water interface by enhancing release of redox-sensitive ph
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅