论文
论文标题: Deep Illumina sequencing reveals conserved and novel microRNAs in grass carp in response to grass carp reovirus infection
作者: He, Libo; Zhang, Aidi; Chu, Pengfei; Li, Yongming; Huang, Rong; Liao, Lanjie; Zhu, Zuoyan; Wang, Yaping
出版刊物: BMC GENOMICS
出版日期: FEB 20
出版年份: 2017
卷/期:
DOI: 10.1186/s12864-017-3562-4
论文摘要: Background: The grass carp hemorrhagic disease caused by the grass carp reovirus (GCRV) is a major disease that hampers the development of grass carp aquaculture. The mechanism underlying GCRV pathogenesis and hemorrhagic symptoms is still unknown. MicroRNAs (miRNAs) are key regulators involved in various biological processes. The aim of this study was to identify conserved and novel miRNAs in grass carp in response to GCRV infection, as well as attempt to reveal the mechanism underlying GCRV pathogenesis and hemorrhagic symptoms. Results: Grass carp were infected with GCRV, and spleen samples were collected at 0 (control), 1, 3, 5, 7, and 9 days post-infection (dpi). These samples were used to construct and sequence small RNA libraries. A total of 1208 miRNAs were identified, of which 278 were known miRNAs and 930 were novel miRNAs. Thirty-six miRNAs were identified to exhibit differential expression when compared with the control, and 536 target genes were predicted for the 36 miRNAs. GO and KEGG enrichment analyses of these target genes showed that many of the significantly enriched terms were associated with immune response, blood coagulation, hemostasis, and complement and coagulation cascades, especially the GO term blood coagulation and pathway complement and coagulation cascades. Ten representative target genes involved in complement and coagulation cascades were selected for qPCR analysis, and the results showed that the expression patterns of these target genes were significantly upregulated at 7 dpi, suggesting that the pathway complement and coagulation cascades was strongly activated. Conclusion: Conserved and novel miRNAs in response to GCRV infection were identified in grass carp, of which 278 were known miRNAs and 930 were novel miRNAs. Many of the target genes involved in immune response, blood coagulation, hemostasis, and complement and coagulation cascades. Strong activation of the pathway complement and coagulation cascades may have led to endothelial-cell and blood-cell damage and hemorrhagic symptoms. The present study provides a new insight into understanding the mechanism underlying GCRV pathogenesis and hemorrhagic symptoms.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅