论文
论文标题: The Biomass and Physiological Responses of Vallisneria natans (Lour.) Hara to Epiphytic Algae and Different Nitrate-N Concentrations in the Water Column
作者: Min, Fenli; Zuo, Jincheng; Zhang, Yi; Lin, Qingwei; Liu, Biyun; Sun, Jian; Zeng, Lei; He, Feng; Wu, Zhenbin
出版刊物: WATER
出版日期: NOV
出版年份: 2017
卷/期: 11
DOI: 10.3390/w9110863
论文摘要: Increasing N concentration and the high density of epiphytic algae are both key factors leading to the decline of submerged macrophytes in many eutrophic lakes. In order to investigate the impacts of increased nitrate-N concentration and the growth of epiphytic algae on the decline of submerged vegetation, we conducted a 2 x 4 factorial experiment with the submerged macrophyte Vallisneria natans (Lour.) Hara by measuring the biomass of plants and some physiological indexes in leaves of V. natans under four nitrate-N concentrations in the water column (0.5, 2.5, 5, and 10 mg/L) and two epiphytic groups (epiphytic algae group and no epiphytic algae group). The results suggested that epiphytic algae could impose adverse effects on the biomass accumulation of V. natans, while the increasing nitrate-N concentration (0.5-10 mg/L) could oppositely promote this process and counteract the adverse effect of epiphytic algae. When nitrate-N concentration was 5 mg/L, the total chlorophyll content in leaves of V. natans in the epiphytic algae group was prominently lower compared with the no epiphytic algae group, while MDA, free proline, and anti-oxidant enzyme (SOD, POD, CAT) activities were significantly higher. Overhigh nitrate-N concentration in the water column also directly imposed adverse effects on the physiology of V. natans. When nitrate-N concentration was over 5 mg/L, the total chlorophyll content and free proline decreased in the no epiphytic algae group, while soluble carbohydrates and soluble proteins decreased when nitrate-N was over 2.5 mg/L. Meanwhile, epiphytic algae and nitrate-N content imposed a synergetic effect on the anti-oxidant enzyme activities of V. natans. When nitrate-N concentration was over 5 mg/L, SOD, POD, and CAT activities kept constant or decreased, which indicated that the oxidation resistance of V. natans was inhibited by stress. Our results indicate that epiphytic algae and increasing nitrate-N concentration in the water column could severally or synergistically impose adverse effects on the physiology of submerged macrophytes and are both key factors leading to the decline of submerged macrophytes.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅