论文
论文标题: Decomposition of cyanobacterial bloom contributes to the formation and distribution of iron-bound phosphorus (Fe-P): Insight for cycling mechanism of internal phosphorus loading
作者: Wang, Zhicong; Huang, Shun; Li, Dunhai
出版刊物: SCIENCE OF THE TOTAL ENVIRONMENT
出版日期: FEB 20
出版年份: 2019
卷/期:
DOI: 10.1016/j.scitotenv.2018.10.260
论文摘要: Lake eutrophication and the resulting cyanobacterial blooms have become a global water environment problem. These eutrophic lakes usually have relatively high internal phosphorus loading such as Fe-P to support the formation of cyanobacterial blooms. In order to reveal the mechanisms and processes of phosphorus cycling in lake sediments, in this study, Lake Chaohu was selected as the research area, and the effects of cyanobacterial bloom decomposition on the horizontal distribution pattern of Fe-P was studied by field investigation and laboratory simulations. According to the phosphorus fractions in the sediments, Lake Chaohu can be divided into three lake areas, and the Fe-P content in western Chaohu is the highest (908.6 +/- 54.9 mg kg(-1)). The contents and proportions of Fe-P were significantly positively correlated with cyanobacterial pigments in sediments, but they negatively correlated with undegraded chl-a, especially when the Fe-P content was <400 mg kg(-1). Based on these statistical analyses, we proposed a hypothesis that the settled cyanobacterial organic matters (COM) could promote the formation of Fe-P. This hypothesis was proved by the simulation experiments of adding COM to the oligotrophic lakeshore clay. The results suggested that the content and proportion of Fe-P in sediments were significantly increased by the COM addition, and also, they were significantly positively correlated with the decomposition of the COM. The formation processes of Fe-P were further confirmed by the analysis of Fourier transform infrared (FT-IR) spectra. Microbial community analysis suggested that the bacterial species including FeOB and genus Pseudomonas might play an important role in the formation of Fe-P. This study suggested that the settled COM could enhance the eutrophication of sediments through a positive feedback cycle. Therefore, it is necessary to carry out bloom removal and sediment dredging simultaneously, and only then the cyanobacterial bloom can be effectively controlled. (C) 2018 Elsevier B.V. All rights reserved.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅