论文
论文标题: Periodic deprivation of gaseous hydrogen sulfide affects the activity of the concrete corrosion layer in sewers
作者: Sun, Xiaoyan; Jiang, Guangming; Bond, Philip L.; Keller, Jurg
出版刊物: WATER RESEARCH
出版日期: JUN 15
出版年份: 2019
卷/期:
DOI: 10.1016/j.watres.2019.03.074
论文摘要: Sulfide induced concrete corrosion significantly reduces the service life of the sewer systems. Gaseous hydrogen sulfide (H2S) levels are a key factor affecting the corrosion rate and these fluctuate due to the diurnal flow pattern of sewers. Currently, there is little known about how such fluctuations, in particular the periodic deprivation of H2S, may affect the corrosion activity. This study investigated the impact of the deprivation of H2S on the sulfide uptake rate (SUR) of concrete coupons incubated in laboratory corrosion chambers. After systematic evaluation of the gaseous H2S concentration profiles of two sewer systems, two types of profiles, i.e. short- (1 h) and long- (12 h) term deprivation of H2S, were applied to the concrete coupons. In comparison to the baseline SUR, exposing the concrete coupon to 0 ppm of H2S for 1 h consistently caused a temporary increase of the SUR (i.e. 3.2%-12.5%) following re-supply of H2S at baseline levels. With the continuous re-supply of H2S, there was gradual and steady decrease of SUR to the level close to the baseline SUR. However, for the case after deprivation of H2S for 12 h, the SUR was 5.1% lower than baseline SUR and gradually increased to a level similar to the baseline SUR during the 20 -30 min of continuous re-supply of H2S. In addition, the simultaneous deprivation of H2S and O-2 for 1 h had negligible impact on the SUR Further analysis suggests that the historically accumulated intermediates of sulfide oxidation could act as electron donors for sulfide oxidizing bacteria (SOB). The replenishment of the intermediates upon the re-supply of H2S could play a key role in the increase of SUR after short-term deprivation of H2S. However, the activity of SOB could be diminished after long-term deprivation of H2S, although the sulfur intermediates still could be available. Estimating the sulfide uptake by concrete using the SUR of the average H2S concentration could lead to overestimation of the sulfide uptake. There could be more significant overestimation for the case with longer deprivation of H2S. (C) 2019 Published by Elsevier Ltd.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅