论文
论文标题: Ectothermic omnivores increase herbivory in response to rising temperature
作者: Zhang, Peiyu; van Leeuwen, Casper H. A.; Bogers, Dagmar; Poelma, Marjolein; Xu, Jun; Bakker, Elisabeth S.
出版刊物: OIKOS
出版日期: JUL
出版年份: 2020
卷/期: 7
DOI: 10.1111/oik.07082
论文摘要: Higher temperatures as a consequence of global climate change may considerably alter trophic interactions. Ectothermic herbivores and carnivores generally ingest more food with rising temperature as their metabolic rates increase with rising temperature. However, omnivorous ectotherms may respond in two ways: quantitatively by consuming more food and qualitatively by altering their degree of herbivory or carnivory through a diet shift. We hypothesize that rising temperature will increase herbivory of ectothermic omnivores as herbivory increases towards the equator. We tested the hypothesis in a freshwater model system in which ectothermic omnivores are prevalent, by applying two approaches, a temperature manipulation experiment and a literature study. We performed feeding trials with a juvenile aquatic ectothermic omnivore (pond snail Lymnaea stagnalis) at different temperatures ranging from 12 to 27 degrees C, supplying them with both animal food and plant material, and directly quantified their consumption rates over time. The results showed that snails cultured at high temperatures (> 21 degrees C) increased the proportion of plant material in their diets after 17 days, which supports our hypothesis. In the literature survey, we found that rising temperature increased herbivory in multiple aquatic animal taxa, including zooplankton, amphibians, crayfish, fish and snails. This suggests that aquatic ectothermic omnivores might commonly increase herbivory with rising temperature. The mechanisms underlying this temperature-induced diet shift are not sufficiently explained by current theories related to the physiology, metabolism and stoichiometry of omnivores. We propose to incorporate the animals' ontogenetic development in the temperature metabolic stoichiometry hypothesis as a complementary explanation for the diet shift, namely that the diet shift could be due to faster development of the ectotherms and an earlier ontogenetic diet shift at higher temperatures. We conclude that future global warming will most likely alter food webs by increasing the top-down control of aquatic herbivores and omnivores on primary producers.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅