论文
论文标题: Responses of an emergent macrophyte, Zizania latifolia, to water-level changes in lakes with contrasting hydrological management
作者: Yang, Zhendong; Davy, Anthony J.; Liu, Xueqin; Yuan, Saibo; Wang, Hongzhu
出版刊物: ECOLOGICAL ENGINEERING
出版日期: MAY 15
出版年份: 2020
卷/期:
DOI: 10.1016/j.ecoleng.2020.105814
论文摘要: Twenty-four lakes associated with the Yangtze floodplain and Huaihe basin, China, with different degrees of disconnection from the river systems, exhibited managed hydrologies ranging from minimally fluctuating reservoir-like lakes, through intermittently fluctuating lakes to those with large, quasi-natural fluctuations in level. We hypothesized that annual water-level fluctuations limit growth and survival of the emergent macrophyte Zizania latifolia. We investigated adaptations to submergence and sought to define the tolerances of Z. latifolia to the amplitude and timing of water-level fluctuations in these types of lake, at different stages in its phenology and life cycle. Shoots from rhizome buds emerged in early spring and reached maximum extension with high water levels in summer. Z. latifolia did not occur in lakes with the highest amplitude (> 5 m) of fluctuation. Height growth in lakes with low amplitude (reservoir-like) was smaller than in lakes with greater amplitude (intermittent to quasi-natural fluctuations), giving the appearance of 'short' and 'tall' phenotypes. Across all lakes, however, maximum height was linearly related to water depth in June and to annual amplitude of water level, indicating a continuous phenotypic response. Peak biomass was weakly affected by these environmental drivers. Field experiments showed that seedlings tolerated water depths of c. twice their height (0.6 m), and submergence rates similar to their maximum extension growth rate (2 cm.d(-1)). Sprouting of rhizome buds was unaffected by submergence to a depth of 0.4 m, but then declined with depth. This study reveals the effects of large-scale hydrological engineering on an emergent macrophyte of economic and conservation importance and informs the management of its populations under seasonally fluctuating water-level regimes.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅