论文
论文标题: Effects of macrophytes on ecosystem metabolism and net nutrient uptake in a groundwater fed lowland river
作者: Preiner, Stefan; Dai, Yanran; Pucher, Matthias; Reitsema, Rosanne E.; Schoelynck, Jonas; Meire, Patrick; Hein, Thomas
出版刊物: SCIENCE OF THE TOTAL ENVIRONMENT
出版日期: JUN 15
出版年份: 2020
卷/期:
DOI: 10.1016/j.scitotenv.2020.137620
论文摘要: Transport and transformation of inorganic nutrients are influenced by abiotic-biotic interactions and determine downstream water quality. Macrophytes play an important role in these complex ecological interactions. The role of macrophytes was studied in three reaches of the groundwater-fed, oligotrophic River Fischa with different macrophyte coverage and biomass. This was done by measuring metabolism and calculating changes in nutrient loading and concentrations, which were determined via an upstream-downstream mass balance approach. As the dominant autotrophs, we expected macrophytes (i) to have a direct effect by uptake and release, and (ii) an indirect effect by slowing down flow, which results in changed sedimentation patterns and altered conditions for heterotrophic microbial organisms implicating higher turnover and uptake rates. The seasonal development of macrophytes in 2017 had a strong impact on gross primary production, but not on ecosystem respiration. Increase in macrophyte biomass led to higher GPP (max. 5.4 g O(2)m(-2)d(-1)). ER was highest in autumn in the reach with intermediate macrophyte biomass (max. 10.1 g O(2)m(-2)d(-1)). We observed that the autotrophic uptake of phosphorus accounted for 80-145% of the P-PO4-flux and concluded that P-uptake by macrophytes from the sediment is an important source of phosphate for macrophytes in the river. By accumulating fine sediment, macrophytes are improving the availability of phosphate for their own long-term development. N-NO3, represented >99% of the nitrogen flux. N-NO3 net uptake was higher in the reaches with more macrophytes (0.84 vs. 0.12 g m(-2)d(-1)), but in average only 21% of the net uptake could be related to autotrophic nitrogen uptake in the reach with high macrophyte biomass. Dissimilatory uptake by heterotrophic organisms, most probably denitrification, were of high relevance. Macrophytes supported microbial uptake and release by improving conditions and slowing down flow. In the River Fischa, an oligotrophic river with low variability of environmental parameters, macrophytes greatly affected nutrient uptake by direct and indirect pathways. (C) 2020 The Authors. Published by Elsevier B.V.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅