论文
论文标题: Sub-lethal toxicity assessment of the phenylurea herbicide linuron in developing zebrafish (Danio rerio) embryo/larvae
作者: Maharaj, Sapna; El Ahmadie, Nader; Rheingold, Spencer; El Chehouri, Jana; Yang, Lihua; Souders, Christopher L., II; Martyniuk, Christopher J.
出版刊物: NEUROTOXICOLOGY AND TERATOLOGY
出版日期: SEP-OCT
出版年份: 2020
卷/期:
DOI: 10.1016/j.ntt.2020.106917
论文摘要: Due to run-off and rain events, agrochemicals can enter water catchments, exerting endocrine disruption effects and toxicity to aquatic organisms. Linuron is a phenylurea herbicide used to control a wide variety of vegetative weeds in agriculture in addition to residential applications. However, there are few studies that quantify its toxicity to early developmental stages of fish. The objectives of this study were to assess the acute toxicity of linuron to zebrafish embryos/larvae by measuring mortality, morphological deformities, oxidative respiration, gene expression, and locomotor activity via the Visual Motor Response test. Zebrafish embryos at similar to 6-h post-fertilization (hpf) were exposed to either embryo rearing medium (ERM), or one dose of 0.625, 1.25, 2.5, 5, and 10 mu M linuron for up to 7 days post-fertilization (dpf) depending on the assay. Zebrafish larvae exposed to linuron displayed pericardial edema, yolk sac edema, and spinal curvature. Oxidative respiration assessments in embryos using the Agilent XF(e)24 Flux Analyzer revealed that linuron decreased mean basal respiration and oligomycin-induced ATP-linked respiration in 30 hpf embryos at 20 mu M after a 24-hour exposure. In 7 dpf larvae, transcript abundance was determined for 6 transcripts that have a role in oxidative respiration (atp06, cox1, cox4-1, cox5a1, cytb, and nd1); the relative abundance of these transcripts was not altered with linuron treatment. A Visual Motor Response test was conducted on 7 dpf larvae to determine whether linuron (0.625 to 5 mu M) impaired locomotor activity. Larval activity in the dark period decreased in a dose dependent manner and there were indications of hypoactivity as low as 1.25 mu M. Transcript abundance was thus determined for tyrosine hydroxylase (th1) and glutamic acid decarboxylase 67 (gad1b), two rate limiting enzymes that control the production of dopamine and gamma-aminobutyric acid respectively. The mRNA levels of gad1b = 0.019) were reduced with increasing concentrations of linuron while th1 (p = 0.056) showed a similar decreasing trend, suggesting that neurotransmitter biosynthesis may be altered with exposure to linuron. This study improves knowledge related to the toxicity mechanisms for linuron and is the first to demonstrate that this anti-androgenic chemical impairs oxidative respiration and exerts neurotoxic effects associated with neurotransmitter biosynthesis during early development. These data are significant for environmental risk assessment of agrochemicals.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅