论文
论文标题: Heavy metal gradients from rural to urban lakes in central China
作者: Xia, Wentong; Wang, Rui; Zhu, Bin; Rudstam, Lars G.; Liu, Yinglong; Xu, Yanxue; Xin, Wei; Chen, Yushun
出版刊物: ECOLOGICAL PROCESSES
出版日期: SEP 15
出版年份: 2020
卷/期: 1
DOI: 10.1186/s13717-020-00251-8
论文摘要: Background Limited information is available on heavy metal patterns in lakes under rapid watershed urbanization, especially considering a large spatial gradient with a long linear distance and great variations in topographic relief. To fill this gap, we studied concentrations of a series of heavy metals in both water and sediments from 20 lakes along a rural to urban gradient in central China, and we aimed to understand the effects of urban processes on heavy metal dynamics in lake ecosystems. Studied lakes were divided into five groups: A (rural reservoir group), B (rural commercial fishing group), C (urban park group), D (urban recreational fishing group), and E (urban commercial fishing group). An inductively coupled plasma optical emission spectrometer (ICP-OES) and an inductively coupled plasma-mass spectrometer (ICP-MS) were used to analyze the heavy metals in water and sediments. Results An increasing trend of most heavy metals in water from rural to urban lakes was observed. Concentrations of cadmium (Cd), cobalt (Co), lead (Pb), chromium (Cr), arsenic (As), nickel (Ni), magnesium (Mn), iron (Fe), and aluminum (Al) in water were significantly lower in rural group A than those in other groups. Arsenic in sediments of rural group A was lower than those in other groups. No other heavy metal element in sediments was significantly different among groups. The enrichment factor analysis of selected heavy metals showed there were different degrees of enrichments of heavy metals in sediments. The potential ecological risk index showed a low level for heavy metals in sediments of all studied lakes. Conclusions Results indicated that urban processes could have an impact on heavy metals in lake water. The sources of heavy metals in sediments were more likely from anthropogenic activities. These results could enhance our understanding of metal dynamics in lake ecosystems under urbanization and could help prevent heavy metal pollutions and promote sustainable management of urban ecosystems.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅