论文
论文标题: Regulation of ddb2 expression in blind cavefish and zebrafish reveals plasticity in the control of sunlight-induced DNA damage repair
作者: Zhao, Haiyu; Li, Hongxiang; Du, Juan; Di Mauro, Giuseppe; Lungu-Mitea, Sebastian; Geyer, Nathalie; Vallone, Daniela; Bertolucci, Cristiano; Foulkes, Nicholas S.
出版刊物: PLOS GENETICS
出版日期: FEB
出版年份: 2021
卷/期:
DOI: 10.1371/journal.pgen.1009356
论文摘要: We have gained considerable insight into the mechanisms which recognize and repair DNA damage, but how they adapt to extreme environmental challenges remains poorly understood. Cavefish have proven to be fascinating models for exploring the evolution of DNA repair in the complete absence of UV-induced DNA damage and light. We have previously revealed that the Somalian cavefish Phreatichthys andruzzii, lacks photoreactivation repair via the loss of light, UV and ROS-induced photolyase gene transcription mediated by D-box enhancer elements. Here, we explore whether other systems repairing UV-induced DNA damage have been similarly affected in this cavefish model. By performing a comparative study using P. andruzzii and the surface-dwelling zebrafish, we provide evidence for a conservation of sunlight-regulated Nucleotide Excision Repair (NER). Specifically, the expression of the ddb2 gene which encodes a key NER recognition factor is robustly induced following exposure to light, UV and oxidative stress in both species. As in the case of the photolyase genes, D-boxes in the ddb2 promoter are sufficient to induce transcription in zebrafish. Interestingly, despite the loss of D-box-regulated photolyase gene expression in P. andruzzii, the D-box is required for ddb2 induction by visible light and oxidative stress in cavefish. However, in the cavefish ddb2 gene this D-box-mediated induction requires cooperation with an adjacent, highly conserved E2F element. Furthermore, while in zebrafish UV-induced ddb2 expression results from transcriptional activation accompanied by stabilization of the ddb2 mRNA, in P. andruzzii UV induces ddb2 expression exclusively via an increase in mRNA stability. Thus, we reveal plasticity in the transcriptional and post transcriptional mechanisms regulating the repair of sunlight-induced DNA damage under long-term environmental challenges. Author summary The integrity of genetic information is frequently challenged by environmental factors such as sunlight which induce mutations in DNA. Therefore, DNA damage repair mechanisms are ubiquitous and highly conserved. While significant progress has been made in understanding how these mechanisms recognize and repair DNA damage, how they adapt to long-term environmental challenges remains poorly understood. Cavefish have proven to be fascinating models for exploring the function of DNA repair systems in extreme photic environments. We have previously shown that during evolution for millions of years in complete isolation from sunlight, the Somalian cavefish, Phreatichthys andruzzii has lost photoreactivation, a ubiquitous, light-dependent DNA repair system. This results in part from a loss of light, UV and ROS-induced gene transcription. Have other repair systems targeting UV-induced DNA damage been affected in cavefish? Here, we provide evidence that Nucleotide Excision Repair (NER) function is retained in cavefish and is upregulated upon sunlight exposure. Furthermore, we reveal complexity in the transcriptional and posttranscriptional mechanisms regulating the repair of UV-induced DNA damage.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅