论文
论文标题: Microbial fuel cell improves restoration of Hydrilla verticillata in an algae-rich sediment microcosm system
作者: Xu, Peng; Xiao, En-Rong; He, Feng; Xu, Dong; Zhang, Yi; Wu, Zhenbin
出版刊物: CHEMOSPHERE
出版日期: MAR
出版年份: 2021
卷/期:
DOI: 10.1016/j.chemosphere.2020.128987
论文摘要: Settled algae may be used as nutrient for macrophyte establishment, but also can induce marked macrophyte decline during deep anaerobic decomposition. Sediment microbial fuel cells (SMFCs) may promote the utilization of algae-derived nutrients and relieve bio-toxicity from settled algae to submerged macrophytes, thus facilitating plant production. To test these hypotheses, a 62-day comparative study was designed and conducted in microcosms with the following six treatments: control (open-circuit SMFC), plant (open-circuit SMFC with plants), algae (open-circuit SMFC with algae), algae-plant (open-circuit SMFC with algae and plants), algae-SMFC (closed-circuit SMFC with algae), and algae-plant-SMFC (closed-circuit SMFC with algae and plants). The results showed that the presence of Hydrilla verticillata improved the power generation of SMFCs when algae were used as substrates during the whole operation. The decomposition of sedimented algae experienced two periods since the injection. During the slight decomposition period (14-38 day), the algal retention in sediments was enhanced by H. verticillata as a nutrient source. Nitrogen (N) assimilation in plant shoots was facilitated under electrogenesis due to a simultaneous increase of algae-derived dissolved inorganic carbon (DIC) and ammonium (NH4+) in the water column. At the end of the 38th day, the biomass of H. verticillata were increased by 21.4% and 52.3%, respectively, in the algae-plant and algae-plant-SMFC, compared with that in plant treatment. Obvious NH4+-stress was exerted on H. verticillata during the following intense algal decomposition period (38-62 day). Compared with shoots, roots of H. verticillata were more sensitive to the biotoxicity of algae-derived NH4+. The electrogenetic process diverted the degradation pathway from acetoclastic methanogenesis to electrogenesis via redox cycle, resulting in delayed algal decomposition in algae-SMFC treatment. In addition, electrogenesis enhanced the removal of algae-derived N. As a result, NH4+ toxicity to plant roots was effectively alleviated, and sedimented algae served as a stable nutrient source for plant development. Stable transfer rate of algae-derived N from sediments to plant roots was observed, while the assimilation rate of algae-derived N from water column to plant shoots showed a constant increase in the algae-plant-SMFC treatment. Electrogenesis enhanced N-fixing capacity belonged to rhizosphere of H. verticillata, evidenced by greater enrichment of some plant growth-promoting rhizobacteria (PGPRs), including Bradyrhizobium, Mycobacterium, Paenibacillus, Mesorhizobium, and Roseomonas in the algae-plant-SMFC treatment. At the end of the experiment, marked increases in the production of H. verticillata in algae-plant-SMFC were observed, with 90.1% and 32.8%, respectively, when compared with algae-plant and plant treatments (p < 0.05). SMFC application could be used as a strategy to promote the growth of submerged macrophytes in algae-rich sediments. (C) 2020 Elsevier Ltd. All rights reserved.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅