论文
论文标题: Global, continental, and national variation in PM2.5, O-3, and NO2 concentrations during the early 2020 COVID-19 lockdown
作者: He, Chao; Hong, Song; Zhang, Lu; Mu, Hang; Xin, Aixuan; Zhou, Yiqi; Liu, Jinke; Liu, Nanjian; Su, Yuming; Tian, Ya; Ke, Biqin; Wang, Yanwen; Yang, Lu
出版刊物: ATMOSPHERIC POLLUTION RESEARCH
出版日期: MAR
出版年份: 2021
卷/期:
DOI: 10.1016/j.apr.2021.02.002
论文摘要: Lockdowns implemented in response to COVID-19 have caused an unprecedented reduction in global economic and transport activity. In this study, variation in the concentration of health-threatening air pollutants (PM2.5, NO2, and O-3) pre- and post-lockdown was investigated at global, continental, and national scales. We analyzed ground-based data from >10,000 monitoring stations in 380 cities across the globe. Global-scale results during lockdown (March to May 2020) showed that concentrations of PM2.5 and NO2 decreased by 16.1% and 45.8%, respectively, compared to the baseline period (2015-2019). However, O-3 concentration increased by 5.4%. At the continental scale, concentrations of PM2.5 and NO2 substantially dropped in 2020 across all continents during lockdown compared to the baseline, with a maximum reduction of 20.4% for PM2.5 in East Asia and 42.5% for NO2 in Europe. The maximum reduction in O-3 was observed in North America (7.8%), followed by Asia (0.7%), while small increases were found in other continents. At the national scale, PM2.5 and NO2 concentrations decreased significantly during lockdown, but O-3 concentration showed varying patterns among countries. We found maximum reductions of 50.8% for PM2.5 in India and 103.5% for NO2 in Spain. The maximum reduction in O-3 (22.5%) was found in India. Improvements in air quality were temporary as pollution levels increased in cities since lockdowns were lifted. We posit that these unprecedented changes in air pollutants were mainly attributable to reductions in traffic and industrial activities. Column reductions could also be explained by meteorological variability and a decline in emissions caused by environmental policy regulations. Our results have implications for the continued implementation of strict air quality policies and emission control strategies to improve environmental and human health.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅