论文
论文标题: Species dispersal along rivers and streams may have variable importance to metapopulation structure
作者: Chiu, Ming-Chih; Ao, Sicheng; Resh, Vincent H.; He, Fengzhi; Cai, Qinghua
出版刊物: SCIENCE OF THE TOTAL ENVIRONMENT
出版日期: MAR 15
出版年份: 2021
卷/期:
DOI: 10.1016/j.scitotenv.2020.144045
论文摘要: The ability to prioritize habitats that have spatially varied contributions to species persistence can produce synergistic benefits for regional conservation efforts. However, conservation in spatially diverse landscape-networks requires considering dispersal asymmetry in the context of ecological connectivity and metapopulation persistence. By developing an approach based on metapopulation theory, this study prioritized the importance of habitat (as determined by the habitat quality and spatial position in networks) on metapopulation structure in mountainous streams. As a case study, we examined dispersal via overland and instream networks in a riverine mayfly Rhithrogena sp. cf. japonica in a mountain range of Southwest China. Compared to flow velocity, water depth, and instream nutrient-levels, water temperature was a key factor in determining local habitat suitability for R. sp. cf. japonica. Higher water temperature was linked to poor habitat suitability. Instream pathways were the main dispersal corridors compared with overland movement between tributaries for this mayfly. In basins on the east aspect of this mountain range, either monotonically increasing (i.e., never decreasing) or unimodal (i.e., with a single peak) patterns demonstrated the importance of riverine habitats that occur along elevational gradients. However, the importance of habitat appeared to show no definite patterns with elevation on the west aspect. In terms of metapopulation structure, local quality of habitat contributed more to the regional importance of habitat than its spatial position in the networks. The framework presented highlights that the importance of riverine habitats may be quite variable in species having directional dispersal networks across the fluvial landscape in mountainous areas. Results from this framework can serve as the basis to apply a mechanistic understanding to managing and protecting native populations through regional restoration actions. (C) 2020 Elsevier B.V. All rights reserved.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅