论文
论文标题: Characteristic analysis of phospholipid fatty acids (PLFAs) in typical nutrient polluted lake sediment in Wuhan
作者: Zhang, Xia; Chen, Qianru; Wang, Chuan; Zhang, Hongpei; Zhao, Yuqing; Zhang, Liping; Liu, Biyun; Wu, Zhenbin; Zhou, Qiaohong
出版刊物: INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH
出版日期: APR
出版年份: 2021
卷/期:
DOI: 10.1016/j.ijsrc.2020.09.002
论文摘要: The process of urbanization aggravates the endogenous pollution of urban lake sediment, and polluted sediment may seriously affect the quality of the water in lakes. At present, it is difficult to distinguish the difference between sediment that is heavily polluted by nitrogen (N) and phosphorus (P) when using an analysis based on a physicochemical index classification. The current study applied phospholipid fatty acid (PLFA) technology to further analyze the sediment characteristics from the perspective of microbiology. Surface sediment from five urban lakes that are heavily polluted with N and P in Wuhan were sampled. Statistical approaches were used to analyze the microbial community structure in the sampled sediment, and to determine the correlations between the microorganisms and physicochemical indices. The most severely polluted lake sediment had similar PLFA structures, the highest saturated fatty-acid content, and bacteria as the dominant microorganism. However, there were differences between the microbial biomass of the various sediment samples, which may have been related to the degree of N and P pollution. Analysis of the microbial diversity in the sediment samples indicated that the bacteria were experiencing starvation and nutrient pressure, which may have been due to the dissolved oxygen concentration of the heavily polluted lake sediment. A correlation analysis showed that the endogenous N and P had different effects on the microbes of the polluted sediment. A redundancy analysis (RDA) demonstrated that the N/P ratio had the greatest influence on the PLFA species, accounting for 83% of the cumulative interpretation. To effectively promote the role of sediment microorganisms on circulating elements, it is necessary to regulate the N/P ratio of the sediment to some extent. When the N/P ratio in sediment exceeds 6, N pollution should be prioritized. (C) 2020 International Research and Training Centre on Erosion and Sedimentation/the World Association for Sedimentation and Erosion Research. Published by Elsevier B.V. All rights reserved.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅