论文
论文标题: The changing characteristics of phytoplankton community and biomass in subtropical shallow lakes: Coupling effects of land use patterns and lake morphology
作者: Peng, Xue; Zhang, Lu; Li, Yuan; Lin, Qingwei; He, Chao; Huang, Suzhen; Li, Hua; Zhang, Xinyi; Liu, Biyun; Ge, Fangjie; Zhou, Qiaohong; Zhang, Yi; Wu, Zhenbin
出版刊物: WATER RESEARCH
出版日期: JUL 15
出版年份: 2021
卷/期:
DOI: 10.1016/j.watres.2021.117235
论文摘要: The community composition and biomass of phytoplankton in shallow lakes are impacted by many en-vironmental factors including water quality physicochemical parameters, land use in the watershed, and lake morphology. However, few studies have simultaneously evaluated the relative importance of these factors on the effect of community composition and biomass of phytoplankton. The relative importance of the water quality physicochemical parameters (water temperature [WT], total nitrogen [TN], total phos-phorus [TP], pH, dissolved oxygen [DO], electrical conductivity [EC], turbidity and Secchi depth [SD]), land use (built-up land, farmland, waters, forest, grassland, and unused land) in the watershed, and lake mor-phology (area and depth) on the composition and biomass of phytoplankton communities were assessed in 29 subtropical shallow lakes in Wuhan, China, during different seasons from December 2017 to Novem-ber 2018. The results showed that phytoplankton in all 29 lakes was mainly composed of Cyanophyta, Chlorophyta, and Bacillariophyta. Phytoplankton abundance was highest in summer and lowest in winter. We analyzed the relative importance of the three groups of variables to the community composition of the phytoplankton by variance decomposition. The results showed that the three groups of environmental variables had the highest explanation rate (> 80%) for the composition of the phytoplankton community in summer and autumn, and the explanation rates in spring and winter were 42.1% and 39.8%, respec-tively. The water quality physicochemical parameters were the most important variables affecting the composition of phytoplankton communities, followed by land use in the watershed. Through generalized additive model and structural equation model analysis, we found that the land use and lake morphology had minimal direct impact on the Chl-a and cell density of phytoplankton, mainly by altering the TN, TP, turbidity, SD, DO, and EC, which indirectly affected phytoplankton. WT and nutrients were still the main predictors of phytoplankton abundance. Built-up land was the main source of nitrogen and phosphorus in lakes. Correlation analysis found that forest and grassland had positive impacts on reducing lake nitro-gen and phosphorus contents. This showed that increasing grassland and forest in the watershed could reduce the pollutants entering the lake. Our findings will contribute to water quality management and pollution control for subtropical shallow lakes. (c) 2021 Elsevier Ltd. All rights reserved.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅