论文
论文标题: Occurrence and risk assessment of pharmaceuticals and personal care products (PPCPs) against COVID-19 in lakes and WWTP-river-estuary system in Wuhan, China
作者: Chen, Xiangping; Lei, Lei; Liu, Sitian; Han, Jian; Li, Ruiwen; Men, Jun; Li, Lin; Wei, Lin; Sheng, Yaqi; Yang, Lihua; Zhou, Bingsheng; Zhu, Lizhong
出版刊物: SCIENCE OF THE TOTAL ENVIRONMENT
出版日期: OCT 20
出版年份: 2021
卷/期:
DOI: 10.1016/j.scitotenv.2021.148352
论文摘要: The consumption of pharmaceuticals and personal care products (PPCPs) for controlling and preventing the COVID-19 would have sharply increased during the pandemic. To evaluate their post-pandemic environmental impacts, five categories of drugs were detected in lakes and WWTP-river-estuary system near hospitals of Jinyintan, Huoshenshan and Leishenshan in the three regions (J, H and L) (Regions J, H and L) in Wuhan, China. The total amount of PPCPs (ranging from 2.61 to 1122 ng/L in water and 0.11 to 164 ng/g dry weight in sediments) were comparable to historical reports in Yangtze River basin, whereas the detection frequency and concentrations of ribavirin and azithromycin were higher than those of historical studies. The distribution of concerned drugs varied with space, season, media and water types: sampling sites located at WWTPs-river-estuary system around two hospitals (Regions L and J) usually had relatively high waterborne contamination levels, most of which declined in autumn; lakes had relatively low waterborne contamination levels in summer but increased in autumn. The potential risks of detected PPCPs were further evaluated using the multiple-level ecological risk assessment (MLERA): sulfamethoxazole and azithromycin were found to pose potential risks to aquatic organisms according to a semi-probabilistic approach and classified as priority pollutants based on an optimized risk assessment. In general, the COVID-19 pandemic did not cause serious pollution in lakes and WWTPs-river estuary system in Wuhan City. However, the increased occurrence of certain drugs and their potential ecological risks need further attention. A strict source control policy and an advanced monitoring and risk warning system for emergency response and long-term risk control of PPCPs is urgent. (c) 2021 Elsevier B.V. All rights reserved.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅