论文摘要: |
The occurrence of ten target pharmaceuticals was investigated in drinking water sources and tap water in a city in the middle reaches of the Yangtze River, including erythromycin (ERY), roxithromycin (RTM), ciprofloxacin (CPX), ofloxacin (OFX), sulfadiazine (SDZ), sulfamethoxazole (SMX), oxytetracycline (OTC), tetracycline (TC), ibuprofen (IBF), and naproxen (NPX). And the corresponding ecological risk for three classes of aquatic organisms and human health risk for different life stages were estimated. Results demonstrated that nine pharmaceuticals except for TC were detected with the frequencies of 20-100% and the concentrations of <LOQ-118.60 ng/L in drinking water sources. Only SMX and IBF were detected quantitatively with the highest concentrations of 0.69 ng/L and 1.28 ng/L in tap water, respectively. The concentrations of the target pharmaceuticals were lower than or comparable with those in other drinking water systems. The spatiotemporal variations of the target pharmaceuticals might be mainly attributed to their usage object, emission amount, and natural attenuation. The overall discrepancy of concentrations between drinking water sources and tap water might indicate the purification effect of drinking water treatment system. Individual pharmaceutical in drinking water resources posed negligible risks to invertebrate and fish; however, ERY, CPX, OFX, and SMX posed high risk to algae. Moreover, pharmaceutical exposure by tap water caused no risk to human health. Nevertheless, the long-term, chronic, and mixed risks of pharmaceuticals and the potential risk of antibiotic-resistant genes should be concerned. This study enriches environmental monitoring data of pharmaceuticals in drinking water sources and tap water, and provides scientific information for emerging pollutants management in drinking water system. |