论文
论文标题: Soil biocrusts affect metabolic response to hydration on dunes in west Queensland, Australia
作者: Thomas, Andrew D.; Elliott, David R.; Hardcastle, David; Strong, Craig L.; Bullard, Joanna; Webster, Richard; Lan, Shubin
出版刊物: GEODERMA
出版日期: JAN 1
出版年份: 2022
卷/期:
DOI: 10.1016/j.geoderma.2021.115464
论文摘要: Soil biocrusts, formed from communities of microbes and their extracellular products are a common feature of dryland soil surfaces. Biocrust organisms are only intermittently metabolically active, but due to their ubiquity they make a significant contribution to the carbon cycle. Quantification of the controls and insights into the interlinked process of photosynthesis and respiration are essential to enhancing our understanding of the carbon cycle in the world's drylands. Yet, there have been relatively few field studies investigating controls on both biocrust photosynthesis and respiration. We undertook field-based experiments at two dune sites during the dry season in Diamantina National Park in Queensland, Australia to determine how biocrust hydration and illumination affect soil CO2 flux and photosynthesis. Static chambers and an infra-red gas analyser were used to quantify soil CO2 flux, and a fluorometer and a CFlmager were used to determine a range of photosynthetic parameters in the field and laboratory respectively. When dry, biocrust photosynthetic activity was not detected and soil CO2 flux was very low irrespective of biocrust cover. Hydration led to a large and immediate increase in CO2 flux, which was more pronounced in the presence of biocrusts and on the dune with thinner biocrusts. Hydration also initiated the onset of photosynthesis in some biocrusts, which was greatest under low light conditions and sustained with further hydration. There were only infrequent periods of net CO2 uptake to the soil, occurring when CO2 uptake due to photosynthetic activity was less than background soil CO2 flux. Chlorophyll fluorescence imaging indicated biocrust spatial heterogeneity was evident at the cm scale where microtopography creates a myriad of environments for different crust organisms. Our findings demonstrate that biocrusts are highly spatially heterogenetic at both landscape and small scale, which suggests the maintenance of biocrust spatial diversity is likely to be key to imparting resilience to changing climate and disturbance. As well as reaffirming the importance of biocrusts for the carbon cycle in dryland dune soils the study demonstrates that biocrust respiration and photosynthesis respond differently to hydration and shading. This adds an unpredictability to the distribution of soil carbon stocks and the gaseous exchanges of CO2 between the surface and atmosphere. Future changes to precipitation and increased temperatures are likely to reduce soil moisture across much of the Australian interior and consequently biocrusts may experience a decline in biomass, structure, and function which could have significant repercussions beyond carbon stocks.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅