论文
论文标题: Warming alters juvenile carp effects on macrophytes resulting in a shift to turbid conditions in freshwater mesocosms
作者: Zhang, Peiyu; Zhang, Huan; Wang, Huan; Hilt, Sabine; Li, Chao; Yu, Chen; Zhang, Min; Xu, Jun
出版刊物: JOURNAL OF APPLIED ECOLOGY
出版日期: JAN
出版年份: 2022
卷/期:
DOI: 10.1111/1365-2664.14040
论文摘要: Multiple stressors such as climate change and eutrophication are responsible for the global decline in macrophytes in lakes. The loss of this key component can result in turbid conditions and a loss of important ecosystem functions and services, particularly in shallow lakes. Benthivorous fish, which can increase in abundance during eutrophication, can adversely affect macrophytes through physical disturbance, cascading effects on turbidity, suspended and attached algae (phytoplankton and periphyton) and direct consumption. However, whether warming amplifies their effects on macrophytes and can trigger regime shifts remains unexplored. Here, we tested the single and combined effects of warmer water (+4.5 degrees C) and the widespread benthivorous juvenile common carp Cyprinus carpio on two different types of aquatic macrophytes in 24 mesocosms (2,500 L each). We monitored phytoplankton, periphyton, turbidity and the abundance of the submerged curly leafed pondweed Potamogeton crispus and the floating-leaved water chestnut Trapa bispinosa during their growing season. These species dominated successively in spring and summer. Warming alone advanced the growing season of P. crispus by 17 days. Juvenile carp decreased the abundance of the more palatable P. crispus, but promoted the abundance of T. bispinosa, supporting an ecosystem shift to a dominance of floating-leaved macrophytes. Fish also substantially increased water turbidity and the biomass of phytoplankton and periphyton. Warming amplified juvenile carp effects on turbidity and submerged macrophytes, but also decreased the abundance of floating-leaved macrophytes leading to an overall macrophyte decline and increase in water turbidity. Synthesis and applications. Our study provides the first experimental evidence for a warming-induced regime shift from clear-water conditions dominated by submerged or floating/floating-leaved macrophytes to a turbid state in shallow aquatic ecosystems. The regime shift was triggered by the impacts of warming on benthivorous fish (juvenile common carp) rather than on macrophytes. Lowering nutrient loading and other measures to reduce the abundance of benthivorous fish (e.g. fish removal and piscivorous fish restocking) thus may become increasingly important for the management of shallow lakes under global climate change.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅