论文
论文标题: Effects of Dietary Inclusion of Clostridium autoethanogenum Protein on the Growth Performance and Liver Health of Largemouth Bass (Micropterus salmoides)
作者: Lu, Qisheng; Xi, Longwei; Liu, Yulong; Gong, Yulong; Su, Jingzhi; Han, Dong; Yang, Yunxia; Jin, Junyan; Liu, Haokun; Zhu, Xiaoming; Xie, Shouqi
出版刊物: FRONTIERS IN MARINE SCIENCE
出版日期: NOV 12
出版年份: 2021
卷/期:
DOI: 10.3389/fmars.2021.764964
论文摘要: Clostridium autoethanogenum protein (CAP) is a novel protein source for aqua-feeds. The present study aimed to investigate the effects of dietary CAP on growth performance, immunity, and liver health status of juvenile largemouth bass (Micropterus salmoides). Four isonitrogenous and isolipid experimental diets were formulated to replace 0% (D1, control), 25% (D2), 50% (D3), and 75% (D4) of fish meal by CAP. Fish (15.05 +/- 0.08 g) were randomly fed one of four experimental diets for 8 weeks. The results showed that weight gain (WG), specific growth rate (SGR), feeding rate (FR), viscerosomatic index (VSI), and hepatosomatic index (HSI) of the D4 group were significantly lower than D1, D2, and D3 groups (P < 0.05). With the increase of substitution level, the total antioxidant capacity (T-AOC) of liver tissue was significantly decreased, while the plasma alkaline phosphatase (AKP) activity was significantly increased (P < 0.05). Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were significantly higher in D3 and D4 groups than in D1 and D2 groups (P < 0.05). Replacing 50 or 75% fish meal by CAP significantly induced the transcription level of apoptosis-promoting genes (bcl-2-associated death protein [bad] and bcl-2-assoxicated x protein; bag [bax]), anti-apoptosis-related genes (tumor protein 53 [p53] and b-cell lymphoma-2 [bcl-2]), and the apoptotic Caenorhabditis elegans (C. elegans) death gene-3 like caspases (cysteine-aspartic proteases-3 [caspase-3], cysteine-aspartic proteases-8 [caspase-8], cysteine-aspartic proteases-9 [caspase-9], and cysteine-aspartic proteases-10 [caspase-10]) in liver, while suppressed the gene expression of the inflammatory factors [interleukin-1 beta (il-1 beta), interleukin-8 (il-8), and tumor necrosis factor, tnf ] in head kidney. At the same time, dietary inclusion of CAP elevated the protein expression of bcl-2, autophagy microtubule-associated protein light chain 3A/B (LC3A/B-I), and LC3A/B-II by inhibiting the phosphorylation of the mammalian target of rapamycin (mTOR; P < 0.05). Moreover, the apoptosis rate of the D3 and D4 groups was significantly increased (P < 0.05). Taken together, these results indicated that the optimal level of CAP-replacing fish meal should be <50% that has no negative effect on the growth performance and liver health of juvenile largemouth bass. In addition, excessive CAP inclusion may damage liver health by activating autophagy and apoptosis signaling pathways.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅