论文
论文标题: Community-level and function response of photoautotrophic periphyton exposed to oxytetracycline hydrochloride
作者: Wang, Zhenfang; Yin, Sicheng; Chou, Qingchuan; Zhou, Dong; Jeppesen, Erik; Wang, Liqing; Zhang, Wei
出版刊物: ENVIRONMENTAL POLLUTION
出版日期: FEB 1
出版年份: 2022
卷/期:
DOI: 10.1016/j.envpol.2021.118593
论文摘要: Periphyton is considered important for removal of organic pollutants from water bodies, but knowledge of the impacts of antibiotics on the community structure and ecological function of waterbodies remains limited. In this study, the effects of oxytetracycline hydrochloride (OTC) on the communities of photoautotrophic epilithon and epipelon and its effect on nitrogen and phosphorus concentrations in the water column were studied in a 12-day mesocosm experiment. The dynamics of nitrogen and phosphorus concentrations in the epipelon and epilithon experiment showed similar patterns. The concentrations of total nitrogen, dissolved total nitrogen, ammonium nitrogen, total phosphorus and dissolved total phosphorus in the water column increased rapidly during the initial days of exposure, after which a downward trend occurred. In the epilithon experiment, we found that the photosynthesis (Fv/Fm) and biomass of epilithon were significantly (P < 0.05) stimulated in the low concentration group. Contrarily, growth and photosynthesis (Fv/Fm) were significantly (P < 0.05) reduced in the medium and high concentration group. We further found that the photosynthetic efficiency of photoautotrophic epilithon was negatively correlated with the concentrations of nitrogen and phosphorus in the water column (P < 0.05). Principal coordinate analysis (PCoA) showed that the communities of epilithic algae in the control group and in the low concentration group were significantly (P < 0.05) different from that of the high concentration group during the initial 4 days. After 8 days' exposure, all groups tended to be similar, indicating that epilithon showed rapid adaptability and/or resilience. Similar results were found for the relative abundance of some epilithic algae. Our findings indicate that the biofilm system has strong tolerance and adaptability to OTC as it recovered fast after an initial suppression, thus showing the important role of periphyton in maintaining the dynamic balance of nutrients with other processes in aquatic ecosystems.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅