论文
论文标题: Land conversion induced by urbanization leads to taxonomic and functional homogenization of a river macroinvertebrate metacommunity
作者: Liu, Zhenyuan; Zhou, Tingting; Heino, Jani; Castro, Diego M. P.; Cui, Yongde; Li, Zhengfei; Wang, Weimin; Chen, Yushun; Xie, Zhicai
出版刊物: SCIENCE OF THE TOTAL ENVIRONMENT
出版日期: JUN 15
出版年份: 2022
卷/期:
DOI: 10.1016/j.scitotenv.2022.153940
论文摘要: Conversion of forests to urban land-use in the processes of urbanization is one of the major causes of biotic homogeni-zation (i.e., decline in beta diversity) in freshwater ecosystems, threating ecosystem functioning and services. How-ever, empirical studies exploring urban land-use shaping patterns of taxonomic and functional beta diversities and their components in subtropical urban rivers are limited. Here, by leveraging data for 43 sampling sites from urban and forest rivers in Shenzhen, a megacity showing rapid urbanization, we determined the spatio-temporal dynamics and associated drivers of taxonomic and functional beta diversities of river macroinvertebrates. Our results showed that, from the forest to urban rivers, taxonomic beta diversity (wet: 32.9%; dry: 17.1%) declined more significantly than functional beta diversity (wet: 17.4%; dry: 9.5%) in different seasons. We further found that these compositional changes were largely driven by decreased roles of species/traits replacement. Although replacement was also domi-nant for taxonomic beta diversity (60.4%-68.4%) in two sets of rivers, richness difference contributed more to func-tional beta diversity in the urban river (52.6%-60.5%). Both deterministic and stochastic processes simultaneously affected beta diversity, with stochastic processes being more important in the urban (3.0-19.0%) than forest rivers (0.0%-3.0%). Besides, db-RDA and variation partitioning results showed that local-scale environmental variables ex-plained considerably large fractions of variation in beta diversity. We hence recommended that biodiversity conserva-ti on should focus on improving and restoring local environmental conditions. Despite no significant seasonal differences in beta diversity were detected in this study, we found that the roles of deterministic (i.e., local-scale and land-use variables) and stochastic processes varied considerately across seasons. This result highlights the viewpoint that urban river biodiversity monitoring should go beyond one-season snapshot surveys. As the ongoing trend of urbanization in developing countries, the findings of this study are relevant in guiding urban river environmental monitoring, biodiversity conservation and land-use planning.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅