论文
论文标题: The Effect of Unpredictable Chronic Stress on Rare Minnow (Gobiocypris rarus): Growth, Behaviour and Physiology
作者: Xu, Chunsen; Su, Liangxia; Qiu, Ning; Hou, Miaomiao; Yu, Fandong; Zou, Xinhua; Wang, Jianwei
出版刊物: BIOLOGY-BASEL
出版日期: DEC
出版年份: 2022
卷/期:
DOI: 10.3390/biology11121755
论文摘要: Simple Summary The laboratory fish model plays an important role in modern scientific research. Ensuring the welfare of laboratory fish is beneficial to the repeatability of experimental results. Laboratory fish will face some stressors in the process of feeding and management, but there are few studies on this part. Our study shows that unpredictable chronic stress for 7 and 14 days can lead to a significant decrease in growth and cortisol levels of laboratory rare minnow. At the same time, the behaviour pattern and neurotransmitter response changed more significantly with the increase of time. Therefore, we should try to reduce the duration and intensity of these stressors to ensure their welfare needs in daily feeding management. Fishes often adjust their behaviour patterns and physiological responses to cope with changing environments, and different life experiences affect them differently. Fishes might adapt to short-term stress, whereas long-term unpredictable stress may lead to various adverse effects. Although some studies have constructed unpredictable stress models of fish, the effect of unpredictable chronic stress (UCS) in the laboratory is poorly understood in fishes. In the current study, we exposed adult rare minnow to an unpredictable chronic stress protocol over 7 and 14 days and measured their response in terms of growth performance, cortisol, neurotransmitter levels (DA, 5-HT, and related metabolites), and behaviour patterns to comprehensively assess the effects of UCS on laboratory rare minnow. We discovered that specific growth rates were significantly decreased, and cortisol levels were lowered in both 7-days and 14-days stress groups. In the behaviour test, the activity level of the 14-days stress group increased, but there was no significant difference in the number of crossings to the center areas, time spent in the center areas, or the speed. In addition, the levels of DA and 5-HT did not change in the stress groups, but the DOPAC and 5-HIAA levels in the 14 days stress group were significantly higher than those in the control group. These results suggested that UCS influences rare minnow growth performance, behaviour patterns, and cortisol levels, and similar stress should be minimised in the laboratory.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅