论文
论文标题: Significant alterations of intestinal symbiotic microbiota induced by intraperitoneal vaccination mediate changes in intestinal metabolism of NEW Genetically Improved Farmed Tilapia (NEW GIFT, Oreochromis niloticus)
作者: Wu, Zhenbing; Zhang, Qianqian; Yang, Jicheng; Zhang, Jinyong; Fu, Jie; Dang, Chenyuan; Liu, Mansen; Wang, Shuyi; Lin, Yaoyao; Hao, Jingwen; Weng, Meiqi; Xie, Derong; Li, Aihua
出版刊物: MICROBIOME
出版日期: DEC 12
出版年份: 2022
卷/期:
DOI: 10.1186/s40168-022-01409-6
论文摘要: Background: After millions of years of coevolution, symbiotic microbiota has become an integral part of the host and plays an important role in host immunity, metabolism, and health. Vaccination, as an effective means of preventing infectious diseases, has been playing a vital role in the prevention and control of human and animal diseases for decades. However, so far, minimal is known about the effect of vaccination on fish symbiotic microbiota, especially mucosal microbiota, and its correlation with intestinal metabolism remains unclear. Methods: Here we reported the effect of an inactivated bivalent Aeromonas hydrophila/Aeromonas veronii vaccine on the symbiotic microbiota and its correlation with the intestinal metabolism of farmed adult Nile tilapia (Oreochromis niloticus) by 16S rRNA gene high-throughput sequencing and gas chromatography-mass spectrometry metabolomics. Results: Results showed that vaccination significantly changed the structure, composition, and predictive function of intestinal mucosal microbiota but did not significantly affect the symbiotic microbiota of other sites including gill mucosae, stomach contents, and stomach mucosae. Moreover, vaccination significantly reduced the relative abundance values of potential opportunistic pathogens such as Aeromonas, Escherichia-Shigella, and Acinetobacter in intestinal mucosae. Combined with the enhancement of immune function after vaccination, inactivated bivalent Aeromonas vaccination had a protective effect against the intestinal pathogen infection of tilapia. In addition, the metabolite differential analysis showed that vaccination significantly increased the concentrations of carbohydrate-related metabolites such as lactic acid, succinic acid, and gluconic acid but significantly decreased the concentrations of multiple lipid-related metabolites in tilapia intestines. Vaccination affected the intestinal metabolism of tilapia, which was further verified by the predictive function of intestinal microbiota. Furthermore, the correlation analyses showed that most of the intestinal differential microorganisms were significantly correlated with intestinal differential metabolites after vaccination, confirming that the effect of vaccination on intestinal metabolism was closely related to the intestinal microbiota. Conclusions: In conclusion, this paper revealed the microbial and metabolic responses induced by inactivated vaccination, suggesting that intestinal microbiota might mediate the effect of vaccination on the intestinal metabolism of tilapia. It expanded the novel understanding of vaccine protective mechanisms from microbial and metabolic perspectives, providing important implications for the potential influence of vaccination on human intestinal microbiota and metabolism.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅