论文
论文标题: Effects of High Ammonium Loading on Two Submersed Macrophytes of Different Growth Form Based on an 18-Month Pond Experiment
作者: Yu, Qing; Wang, Haijun; Wang, Hongzhu; Xu, Chao; Liu, Miao; Ma, Yu; Li, Yan; Ma, Shuonan; Hamilton, David P.; Jeppesen, Erik
出版刊物: FRONTIERS IN PLANT SCIENCE
出版日期: JUL 14
出版年份: 2022
卷/期:
DOI: 10.3389/fpls.2022.939589
论文摘要: Ammonium (NH4-N) produces a paradoxical effect on submersed macrophytes because it is not only the preferred nitrogen source for the growth of plants but also threatens the growth of plants at high concentration. Whether short-term and small-scale physiological toxicity experiments at an individual level can reflect the effects of high ammonium on populations of submersed macrophytes in natural conditions is still unclear. In this study, an 18-month experiment was conducted in six 600 m(2) ponds subjected to different levels of ammonium loading. The effects of high ammonium on populations of canopy-forming Myriophyllum spicatum and rosette-forming Vallisneria natans were explored. The results showed that M. spicatum and V. natans populations can develop high cover and height at high ammonium concentration (7 mg/L) at short-term exposures, and V. natans may be tolerant to 18 mg/L ammonium concentration. However, the cover of M. spicatum and the height of both species were inhibited at 2.4 mg/L at long-term exposures. The height of M. spicatum was two to six times higher than that of V. natans across all treatments and control by the end of the experiment, and the cover of M. spicatum was 7-11 times higher than that of V. natans in most NH4-N loading treatments, except the cover of M. spicatum in the highest NH4-N loading treatment with 18 mg/L NH4-N. The rosette-forming V. natans resists ammonium stress by slow growth (shoot elongation) to reduce consumption, while canopy-forming species resist ammonium stress by shoot elongation and canopy development to capture light. Although increasing ammonium concentration may induce severe stress on M. spicatum, the morphological characteristics of this species may, to some extent, release the plants from this stress. Our present study indicates that the negative effects of ammonium stress on the development of populations increased with exposure duration, and the submersed macrophyte community with stronger ability for light capture and dispersal may resist high ammonium stress. Nevertheless, in strongly ammonium-enriched systems, competition and succession cannot be neglected.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅