论文
论文标题: Variability of phosphorus sorption properties in hydromorphic soils: Consequences for P losses in agricultural landscapes
作者: Couic, Ewan; Gruau, Gerard; Gu, Sen; Casquin, Antoine
出版刊物: EUROPEAN JOURNAL OF SOIL SCIENCE
出版日期: NOV
出版年份: 2022
卷/期:
DOI: 10.1111/ejss.13326
论文摘要: Increasing concerns over water eutrophication due to agricultural phosphorus (P) loss have led to the development of indicators to assess the risk of P release from agricultural soils. Recently, a logarithmic equation linking the degree of phosphorus saturation (DPS) to the simple water-soluble P (WSP) content of soils has been proposed as a universal method to assess this risk based, however, mainly on the analysis of well-drained soils. Here, we studied the P sorption properties and DPS values of 69 hydromorphic soils from cultivated and uncultivated wetland zones located in Brittany, Western France, to test whether the method could also apply to poorly-drained soils. The bulk soil analysis showed that P contents of the studied hydromorphic soils were 30% to 80% higher than P contents normally found in Brittany soils, evidencing a possible P enrichment process. Adsorption isotherms revealed a surprisingly high variability in the P sorption properties as a function of the location of the soil (maximum P adsorption capacity ranging from 500 to 1850 mg kg(-1)), which is caused by variations in the phases controlling P sorption in soil (from clay to organic matter and/or iron and aluminium oxides, depending on the soil location). Distinct relationships between DPS and WSP values were also obtained depending on the location of the soils. The obtained DPS versus WSP relationships showed that the P saturation threshold above which the risk of dissolved P release increases markedly is 30% lower on average for hydromorphic soils than for well-drained soils. Hydromorphic soils appear to be more at risk of releasing dissolved P at the same DPS values than well-drained soils. The present study indicates an underestimation of the P release risk from hydromorphic soils by the existing method developed for well-drained soils and calls for the development of specific risk assessment tools for hydromorphic soils, especially given on the strong spatial heterogeneity of their P sorption properties.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅