论文
论文标题: Overexpression of a novel gene (Pt2015) endows the commercial diatom Phaeodactylum tricornutum high lipid content and grazing resistance
作者: Gao, Shan; Zhou, Lu; Yang, Wenting; Wang, Lijun; Liu, Xuehua; Gong, Yingchun; Hu, Qiang; Wang, Guangce
出版刊物: BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS
出版日期: NOV 26
出版年份: 2022
卷/期:
DOI: 10.1186/s13068-022-02221-y
论文摘要: Background The marine diatom Phaeodactylum tricornutum is a commercially viable species due to its bioactive substances and lipid productivity. Increasing attention has been paid to the isolation or genetic modification of species or strains with a rapid growth rate and large quantities of lipids. Furthermore, contamination of microzooplankton has been one of the major constraints in P. tricornutum large-scale cultivation, which adversely affects growth and greatly impedes the course of biomass production industrialization. Results Here, based on our previous transcriptomics of P. tricornutum, we found a novel gene (ID: 7202015, hereafter called Pt2015) which affects morphotype of P. tricornutum. Pt2015 protein is located in the plastid, which is highly homologous to part of the sequences of exosome component. The morphotype of the Pt2015 knockout strain (termed 2015KO) using CRISPR/Cas9 method is fusiform, but the Pt2015 overexpression strain (termed oeT) demonstrates a majority triradiate morphotype (approximately 95%) which is stable and has been cultured for more than 200 generations. In addition, the oeT strain demonstrated a similar growth rate to the WT and simultaneously accumulated larger lipids droplets that increased by approximately 30% compared to that of the WT. More importantly, the grazing rate of the amoebae cultured in the oeT strain significantly decreased in comparison with that cultured in WT, suggesting that the oeT can effectively avoid being eaten by microzooplankton. Conclusions Therefore, the oeT strain not only improves our understanding of morphotype conversion in diatoms but also demonstrates potential applications for large-scale cultivation of P. tricornutum.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅