论文
论文标题: Young fecal transplantation modulates the visual toxicity of perfluorobutanesulfonate in aged zebrafish recipients
作者: Hu, Chenyan; Li, Jing; Liu, Mengyuan; Lam, Paul K. S.; Chen, Lianguo
出版刊物: AQUATIC TOXICOLOGY
出版日期: OCT
出版年份: 2022
卷/期:
DOI: 10.1016/j.aquatox.2022.106295
论文摘要: Perfluorobutanesulfonate (PFBS) is an emerging pollutant of potent toxicity to impair visual system. Previous studies highlighted the applicability of gut microbiota manipulation to mitigate the toxicities of PFBS. However, it remains unknown whether transplantation of whole fecal microbiota to PFBS-disturbed gut can restore the health of the recipient animals, especially for aged fish that are of high susceptibility. In the present study, aged zebrafish of 3 years old were first transplanted with feces from young counterparts and then exposed to environmentally relevant concentrations of PFBS. After exposure, toxic effects of PFBS on visual system of aged zebrafish were elucidated based on transcriptional, proteomic, biochemical, histological, and behavioral evidences. In addition, interaction between young fecal transplant and innate visual toxicity of PFBS was further explored in the aged. The results showed that PFBS singular exposure induced lipid peroxidation (by 1.9-fold) in aged male eyes, which were alleviated by young fecal transplantation. PFBS also disturbed the retinal structure of the aged, which was characterized by increases in plexiform layers, but decreases in ganglion neuron number (by 26.8% and 26.0% in males and females, respectively) and optic nerve width (by 14.1% and 12.7% in males and females, respectively). It was unexpected that young fecal transplant was very potent in re-organizing the histological assembly of aged eyes regardless of PFBS coexposure, underlining the intimate interplay between gut and retina. Proteomic profiling provided more clues about the visual toxicology mechanism of PFBS, which was found to typically interfere with synaptic neurotransmission occurring in plexiform layers. However, proteome perturbation of aged eyes by PFBS exposure was effectively shifted by the transplantation of young feces towards the control phenotype, suggesting the high ameliorative potential of young fecal transplantation along the gutretina axis. Overall, the present study pinpoints the potent visual toxicity of PFBS in aged animals and highlights the efficacy of young fecal transplant to regulate the inherent toxicity of PFBS. Future studies are necessitated to sequence the gut microbiota and unveil the underlying interactive routes between gut microbes and visual system.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅