论文
论文标题: Interactive effects of benthivorous fish disturbance and ammonium loading on two submersed macrophytes of contrasting growth forms based on a mesocosm study
作者: Yu, Qing; Wang, Haijun; Liu, Miao; Xu, Chao; Ma, Yu; Guo, Weihua; Jeppesen, Erik
出版刊物: FRONTIERS IN ENVIRONMENTAL SCIENCE
出版日期: OCT 10
出版年份: 2022
卷/期:
DOI: 10.3389/fenvs.2022.1024524
论文摘要: Benthivorous fish disturbance and nitrogen loading are two important factors that influence the community structure of submersed macrophytes, but their interactive effect is not well elucidated. We conducted an outdoor mesocosm experiment to examine the individual and combined effects of these two factors on the growth of two submersed macrophytes of different growth forms, i.e., the rosette-forming Vallisneria natans and the canopy-forming Myriophyllum spicatum. The treatments involved two levels of fish (Carassius auratus) disturbance crossed with two levels (0 and 12 g NH4Cl per month) of ammonium (NH4 (+)-N) loading. For M. spicatum, we found that maximum height (MH) was reduced by 30.7%, 26.4%, and 51.0% in fish addition alone (F) and nitrogen addition treatments (N, F + N), respectively, compared with the control (C) treatment. The density of M. spicatum declined by 20%, 62% and 68.8% in the F, N and F + N treatment. The above-ground biomass (AGB) of M. spicatum respectively reduced by 56.7%, 94%, and 96.5% in the F, N and F + N treatments, and the roots/shoots ratio (R/S) increased by 114%, and 176% in N and N + F treatments, respectively. Regarding V. natans, only the MH in the N treatment was reduced (71.9%), and the density exhibited a reduction of 59.1% and 64.5% in the N and F + N treatments, respectively. The AGB of V. natans was significantly lower in the N (90.3%) and N + F (78.4%) treatments compared with the C treatment, while increased by 60.3% in F treatment. The R/S of V. natans increased by 227%, and 74.4% in the N and F + N treatments compared with the C treatment. The interactive effect of fish disturbance and high N on MH and AGB of V. natans and density of M. spicatum were antagonistic. However, the interactive effect on density and BGB of V. natans and AGB of M. spicatum were negatively synergistic. Moreover, fish activity significantly increased the concentration of total suspended solids (TSS) in the water, while total nitrogen (TN), ammonium, total phosphorus (TP), light, pH and salinity were unaffected. When fish and nitrogen were combined, TN, TP, TSS and salinity increased significantly, while pH decreased. Our study reveals that the interactive effects of fish disturbance and high N are synergistic and/or antagonistic, suggesting that the same stressor interaction may vary from synergistic to antagonistic depending on the response variables and growth forms of the macrophytes examined. Our study contributes to the understanding of how different factors can interact with each other and affect submersed macrophytes in aquatic ecosystems. This is timely and relevant knowledge, considering the range of multiple stressors involved in the decline of aquatic ecosystems worldwide at present.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅