论文
论文标题: Water quality monitoring and assessment based on cruise monitoring, remote sensing, and deep learning: A case study of Qingcaosha Reservoir
作者: Qian, Jing; Liu, Hongbo; Qian, Li; Bauer, Jonas; Xue, Xiaobai; Yu, Gongliang; He, Qiang; Zhou, Qi; Bi, Yonghong; Norra, Stefan
出版刊物: FRONTIERS IN ENVIRONMENTAL SCIENCE
出版日期: OCT 11
出版年份: 2022
卷/期:
DOI: 10.3389/fenvs.2022.979133
论文摘要: Accurate monitoring and assessment of the environmental state, as a prerequisite for improved action, is valuable and necessary because of the growing number of environmental problems that have harmful effects on natural systems and human society. This study developed an integrated novel framework containing three modules remote sensing technology (RST), cruise monitoring technology (CMT), and deep learning to achieve a robust performance for environmental monitoring and the subsequent assessment. The deep neural network (DNN), a type of deep learning, can adapt and take advantage of the big data platform effectively provided by RST and CMT to obtain more accurate and improved monitoring results. It was proved by our case study in the Qingcaosha Reservoir (QCSR) that DNN showed a more robust performance (R-2 = 0.89 for pH, R-2 = 0.77 for DO, R-2 = 0.86 for conductivity, and R-2 = 0.95 for backscattered particles) compared to the traditional machine learning, including multiple linear regression, support vector regression, and random forest regression. Based on the monitoring results, the water quality assessment of QCSR was achieved by applying a deep learning algorithm called improved deep embedding clustering. Deep clustering analysis enables the scientific delineation of joint control regions and determines the characteristic factors of each area. This study presents the high value of the framework with a core of big data mining for environmental monitoring and follow-up assessment in a manner of high frequency, multidimensionality, and deep hierarchy.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅