论文
论文标题: Investigation of toxic effect of mercury on Microcystis aeruginosa: Correlation between intracellular mercury content at single cells level and algae physiological responses
作者: Tang, Wenxiao; He, Man; Chen, Beibei; Ruan, Gang; Xia, Yixue; Xu, Pingping; Song, Gaofei; Bi, Yonghong; Hu, Bin
出版刊物: SCIENCE OF THE TOTAL ENVIRONMENT
出版日期: FEB 1
出版年份: 2023
卷/期:
DOI: 10.1016/j.scitotenv.2022.159894
论文摘要: Single-cell studies can help to understand individual differences and obtain atypical cellular characteristics in view of cellular heterogeneity. Herein, the accumulation of mercury (Hg) in single algae cells was studied by droplet chip-time resolved inductively coupled plasma mass spectrometry analytical system, and the relation of Hg accumulation to the physiological responses of algae cell was explored. When low concentrations of Hg2+ (5-20 mu g/L) were used in the exposure experiment, the content of Hg in single cells increased in first 2 h, then decreased with further increase of exposure time to 96 h, probably due to the growth dilution effect of the algae. When exposed to 30 mu g/L Hg2+, the uptake of Hg by individual cells increased over time, which was associated with increased cell membrane permeabil-ity. The exposure to Hg2+ (5-30 mu g/L) inhibited the growth of algae in a concentration-dependent manner and serious growth inhibition occurred under the exposure concentration of 30 mu g/L. While the exposure concentration was lower than 20 mu g/L, algal cells exhibited a recover tendency due to the self-protection mechanism of algal cells. Bivariate results showed that intracellular Hg accumulation was significantly negatively correlated with cells growth in terms of OD680, photosynthetic pigments, F-v/F-m and PIabs. On the contrast, reactive oxygen species content, superoxide dismutase activity, and cell membrane permeability were significantly positively correlated with the accumulation of intracellular Hg. These results are helpful to further understand the toxic effect of Hg on algae.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅