论文
论文标题: Contrasting adaptive genetic consequences of stream insects under changing climate
作者: Nukazawa, Kei; Chiu, Ming-Chih; Kazama, So; Watanabe, Kozo
出版刊物: SCIENCE OF THE TOTAL ENVIRONMENT
出版日期: MAY 10
出版年份: 2023
卷/期:
DOI: 10.1016/j.scitotenv.2023.162258
论文摘要: Freshwater biodiversity undergoes degradation due to climate change. Researchers have inferred the effects of climate change on neutral genetic diversity, assuming the fixed spatial distributions of alleles. However, the adaptive genetic evolution of populations that may change the spatial distribution of allele frequencies along environmental gradients (i.e., evolutionary rescue) have largely been overlooked. We developed a modeling approach that projects the compar-atively adaptive and neutral genetic diversities of four stream insects, using empirical neutral/ putative adaptive loci, ecological niche models (ENMs), and a distributed hydrological-thermal simulation at a temperate catchment under climate change. The hydrothermal model was used to generate hydraulic and thermal variables (e.g., annual current velocity and water temperature) at the present and the climatic change conditions, projected based on the eight gen-eral circulation models and the three representative concentration pathways scenarios for the two future periods (2031-2050, near future; 2081-2100, far future). The hydraulic and thermal variables were used for predictor vari-ables of the ENMs and adaptive genetic modeling based on machine learning approaches. The increases in annual water temperature in the near-(+0.3-0.7 center dot C) and far-future (+0.4-3.2 center dot C) were projected. Of the studied species, with different ecologies and habitat ranges, Ephemera japonica (Ephemeroptera) was projected to lose rear-edge hab-itats (i.e., downstream) but retain the adaptive genetic diversity owing to evolutionary rescue. In contrast, the habitat range of the upstream-dwelling Hydropsyche albicephala (Trichoptera) was found to remarkably decline, resulting in decreases in the watershed genetic diversity. While the other two Trichoptera species expanded their habitat ranges, the genetic structures were homogenized over the watershed and experienced moderate decreases in gamma diversity. The findings emphasize the evolutionary rescue potential, depending on the extent of species-specific local adaptation.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅