论文
论文标题: Piscine Vitamin D Receptors Vdra/Vdrb in the Absence of Vitamin D Are Utilized by Grass Carp Reovirus for Promoting Viral Replication
作者: Song, Yun Jie; Zhang, Jie; Xiao, Jun; Feng, Hao; Xu, Zhen; Nie, Pin; Chang, Ming Xian
出版刊物: MICROBIOLOGY SPECTRUM
出版日期: JUL 19
出版年份: 2023
卷/期:
DOI: 10.1128/spectrum.01287-23
论文摘要: Grass carp reovirus (GCRV) is the causative agent of grass carp hemorrhagic disease, which seriously harms freshwater fish. Although many positive or negative regulators of GCRV infection have been identified in teleosts, little is known about the molecular mechanisms by which GCRV utilizes host factors to generate its infectious compartments beneficial for viral replication and infection. The vitamin D receptor (VDR) plays a pivotal role in the biological actions of vitamin D (VitD). However, little is known about the functions of VDR in the production of viral inclusion bodies (VIBs). Using a representative strain of grass carp reovirus (GCRV) genotype I, GCRV-873, we show that GCRV-873 recruits grass carp Vdrs for promoting the production of VIBs in the absence of VitD. Inhibition of cholesterol synthesis by lovastatin impairs the production of VIBs and blocks the effects of grass carp Vdrs in promoting the production of VIBs in the absence of VitD. Furthermore, grass carp Vdrs are found to form the Vdra-Vdrb heterodimer, which is vital for 3-hydroxy-3-methylglutaryl-coenzyme A reductase (hmgcr)-dependent cholesterol synthesis and GCRV replication. Intriguingly in the presence of VitD, grass carp Vdra but not Vdrb forms the heterodimer with the retinoid X receptor beta b (Rxrbb), which induces the transcription of those genes involved in the RIG-I-like receptor (RLR) antiviral signaling pathway for inhibiting GCRV infection. Furthermore, the VitD-activated Vdra-Vdrb heterodimer attenuates the transcription of the RLR antiviral signaling pathway induced by VitD. In the presence of VitD, a balance between the Vdra-Rxrbb heterodimers as coactivators and Vdra-Vdrb heterodimers as corepressors in affecting the transcriptional regulation of the RLR antiviral signaling pathway may eventually determine the outcome of GCRV infection. Transfection with VitD can abolish the effect of grass carp Vdrs in promoting GCRV replication in a dose-dependent manner. Taken together, these findings demonstrate that GCRV utilizes host Vdrs to increase hmgcr-dependent cholesterol synthesis for promoting its replication, which can be prevented by VitD treatment.IMPORTANCE Grass carp reovirus (GCRV) is the causative agent of grass carp hemorrhagic disease, which seriously harms freshwater fish. Although many positive or negative regulators of GCRV infection have been identified in teleosts, little is known about the molecular mechanisms by which GCRV utilizes host factors to generate its infectious compartments beneficial for viral replication and infection. Here, we show that in the absence of VitD, the GCRV-873 strain utilizes host vitamin D receptors Vdra/Vdrb to increase hmgcr-dependent cholesterol synthesis for promoting the production of VIBs, which are important functional sites for aquareovirus replication and assembly. The negative regulation of Vdrs during viral infection can be prevented by VitD treatment. Thus, this present work broadens understanding of the pivotal roles of Vdrs in the interaction between the host and GCRV in the absence or presence of VitD, which might provide a rational basis for developing novel anti-GCRV strategies.
== 实验室与学会 ==
  • == 实验室与学会 ==
  • 水产品种创制与高效养殖全国重点实验室
  • 中国科学院藻类生物学重点实验室
  • 农业部淡水养殖病害防治重点实验室
  • 武汉白暨豚保护基金会
  • 湖北省海洋湖沼学会
  • 中国动物学会原生动物学分会
  • 中国动物学会斑马鱼分会
  • 湖北省暨武汉动物学会
  • 中国水产学会鱼病学专业委员会
  • 中国鱼类学会
== 平台建设 ==
  • == 平台建设 ==
  • “一带一路”海域赤潮数据库
  • 国家水生生物种质资源库
  • 国家斑马鱼资源中心
  • 中国科学院淡水藻种库
  • 中国科学院武汉生命科学大型仪器区域中心
  • 湿地生态系统观测研究野外站联盟
  • 中国科学院水生生物研究所分析测试中心
  • 中国科学院超级计算武汉分中心
  • 水生生物博物馆
== 相关网站推荐 ==
  • == 相关网站推荐 ==
  • 中国科学院
  • 农业农村部
  • 科学技术部
  • 生态环境部
  • 国家自然科学基金委员会
  • 中国科学院武汉分院
  • 湖北省科学技术厅
  • 湖北省生态环境厅
  • 湖北省农业农村厅