论文摘要: |
Seasonal shifts in hydrology are known to alter the abundance and diversity of basal production resources and habitats and hence strongly influence the structure and function of river ecosystems. However, equivalent knowledge of natural lake ecosystems in floodplain regions is lacking. Here, we used stable isotope ratios of carbon and nitrogen to assess available primary production sources and consumer taxa during the dry and wet seasons in a large floodplain lake connected to the Yangtze River. Fish species showed distinct & delta;C-13 values between two hydrological periods but only small changes in & delta;N-15 values. Most of the fish species had higher estimated trophic levels in the dry season, likely indicating greater carnivory. Results of Bayesian mixing models revealed that benthic algae and benthic organic matter (BOM), combined with C-3 vegetation, were the principal food sources supporting the biomass of most fish species during the low-water period, whereas benthic algae and seston were the most important carbon sources during the flood period. Overall, these findings demonstrate that seasonal hydrological changes, such as water-level fluctuations, can affect the trophic structure and ecosystem functioning of floodplain lake food webs in the subtropical zone. |