论文
论文标题:
作者:
出版刊物:
出版日期:
出版年份:
卷/期:
DOI:
论文摘要: Anammox and denitrification are key processes for nitrogen removal in lake sediments. However, how environmental changes mediate the community structure and functional genes of nitrogen removal bacteria in lakes remain unclear. Using metagenome and amplicon sequencing, we investigated the anammox and denitrifying bacteria and their nitrogen removing potentials in lakes experiencing significant spatiotemporal and environmental variations. The community structure of anammox and denitrifying bacteria exhibited stronger lake-wide spatial variations than that of seasonality, while only the denitrification-related functional genes showed substantial variations in both lakes. Anammox genes (e.g., hzsA/B/C and hdh) showed no significant spatial variations. However, the abundances of anammox and denitrifying genes were significantly higher in winter than in summer. The mesotrophic Lake Weishan demonstrated a greater capacity for complete denitrification in winter, while the eutrophic Lake Donghu exhibited a higher potential of anammox in summer. Differences in functional gene abundances between lakes were more pronounced than variations in phylogenetic diversity, indicating clear functional adaptations to local environments. The coupled nitrogen removal potentials also reflected ecological interactions among anammox and denitrifying genes. Importantly, anammox and denitrifying bacterial communities and their functional genes were primarily driven by dissolved organic carbon, total phosphorous and zinc (Zn). The dissimilarities of anammox and denitrifying bacterial communities increased with geographic distance, indicating a clear distance-decay effect. This study highlights the anammox and denitrifying bacteria and their nitrogen removal potentials in lake sediments that are mediated by both spatial and seasonal environmental changes.